Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_1_a6, author = {D. Z. Kagan}, title = {Invariant functions on free groups and special {HNN-extensions}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {109--122}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_1_a6/} }
D. Z. Kagan. Invariant functions on free groups and special HNN-extensions. Čebyševskij sbornik, Tome 18 (2017) no. 1, pp. 109-122. http://geodesic.mathdoc.fr/item/CHEB_2017_18_1_a6/
[1] Shtern A. I., “Quasirepresentations and pseudorepresentations”, Funct. Anal. Appl., 25:2 (1991), 70–73
[2] Faiziev V. A., “The stability of a functional equation on groups”, Russian Math. Surveys, 48:1 (1993), 193–194
[3] Grigorchuk R. I., “Some results an bounded cohomology”, Combinatorial and Geometric Group Theory (Edinburg, 1993), London Math. Soc. Lecture Notes Ser., 284, Cambridge University Press, Cambridge, 1994, 111–163 | MR
[4] Grigorchuk R. I., “Bounded cohomology of group constructions”, Mat. Zametki, 59:4 (1996), 546–550 | DOI | Zbl
[5] Bardakov V. G., “On the width of verbal subgroups of some free constructions”, Algebra and logic, 36:5 (1997), 494–517 | Zbl
[6] Kagan D. Z., “Existence of nontrivial pseudo-characters on anomalous group products”, Moscow Univ. Math. Bull., 2004, no. 6, 24–28
[7] Kagan D. Z., “Pseudocharacters on anomalous products of locally indicable groups”, J. Math. Sci. (N. Y.), 149:3 (2008), 1224–1229 | DOI | MR | Zbl | Zbl
[8] Merzlyakov Y. I., Rational groups, Nauka, M., 1987
[9] Dobrynina I. V., “On the width in free products with amalgamation”, Mat. Zametki, 68:3 (2000), 353–359 | DOI | Zbl
[10] Dobrynina I. V., “Solution of the width problem in amalgamated free products”, Fundam. Prikl. Mat., 15:1 (2009), 23–30
[11] Dobrynina I. V., Bezverkhnii V. N., “On width in some class of groups with two generators and one defining relation”, Proc. Steklov Inst. Math. Algebra. Topology, 2001, suppl. 2, 53–60 | MR
[12] Dobrynina I. V., Kagan D. Z., “On the width of verbal subgroups in some classes of groups”, Chebyshevski. Sb., 16:4(56) (2015), 150–163
[13] Kagan D. Z., “Width of verbal subgroups for groups with one defining relation”, Algebra, number theory and discrete geometry: Modern Problems and Application, XIII International Conference, Tula, 2015, 76–78
[14] Kagan D. Z., “Pseudocharacters on groups with one defining relation and non-trivial center”, Matematicheskii Sbornik, 208:1 (2017), 80–96 | DOI
[15] Lyndon R. C., Schupp P. E., Combinatorial group theory, Ergeb. Math. Grenzgeb., 89, Springer-Verlag, Berlin–New York, 1977 | MR | Zbl
[16] Magnus W., Karrass A., Solitar D., Combinatorial group theory. Presentations of groups in terms of generators and relations, Pure Appl. Math., 13, Intersci. Publ., John Wiley and Sons, Inc., New York, 1966 | MR | Zbl
[17] Moldavanskii D. I., “Certain subgroups of groups with a single defining relation”, Siberian Math. J., 8:6 (1968), 1039–1048 | DOI | MR