A computer proof of the hypothesis about of centroids
Čebyševskij sbornik, Tome 18 (2017) no. 1, pp. 73-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article provides a proof of the “hypothesis about of centroids”, which is given in the “Experimental validation of hypotheses in GeoGebra” and published in the current issue of the “Сhebyshevskiy sbornik”. This hypothesis is formulated as follows: “Let are a non-degenerate triangle from each vertex held the median. Then the original triangle is split into six triangles without common interior points so that their centroids lie on the same ellipse”. The proof of the hypothesis is based on symbolic computation, implemented in five packages of computer mathematics GeoGebra, Mathcad Prime, Maxima, Maple and Mathematica [2–8]. The use of different systems of symbolic computation for solving a problem allows to obtain visual material for comparative assessment of these systems. In the final part of the article offers to consider another statement — “the hypothesis about of circumcenters”. It is formulated so: “Let the three cevian intersect inside acute-angled triangle in the circumcenter. Then the original triangle is split into six triangles without common interior points so that their circumcenters lie on the same ellipse”. This hypothesis was proposed and confirmed experimentally, using a dynamic model constructed in GeoGebra. This work is devoted to the seventieth Doctor of Physical and Mathematical Sciences, Professor Vasily Ivanovich Bernik. In her curriculum vitae, a brief analysis of his scientific work and educational and organizational activities. The work included a list of 80 major scientific works of V. I. Bernik. Bibliography: 12 titles.
Keywords: GeoGebra, dynamic model, conic, centroid, Mathcad Prime, Maxima, Mathematica, Maple.
@article{CHEB_2017_18_1_a4,
     author = {A. R. Esayan and N. N. Dobrovolsky},
     title = {A computer proof of the hypothesis about of centroids},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {73--91},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_1_a4/}
}
TY  - JOUR
AU  - A. R. Esayan
AU  - N. N. Dobrovolsky
TI  - A computer proof of the hypothesis about of centroids
JO  - Čebyševskij sbornik
PY  - 2017
SP  - 73
EP  - 91
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2017_18_1_a4/
LA  - ru
ID  - CHEB_2017_18_1_a4
ER  - 
%0 Journal Article
%A A. R. Esayan
%A N. N. Dobrovolsky
%T A computer proof of the hypothesis about of centroids
%J Čebyševskij sbornik
%D 2017
%P 73-91
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2017_18_1_a4/
%G ru
%F CHEB_2017_18_1_a4
A. R. Esayan; N. N. Dobrovolsky. A computer proof of the hypothesis about of centroids. Čebyševskij sbornik, Tome 18 (2017) no. 1, pp. 73-91. http://geodesic.mathdoc.fr/item/CHEB_2017_18_1_a4/

[1] Akopyan A. V., Zaslavsky A. A., Geometric properties of curves of the second order, MTSNMO, M., 2007, 136 pp.

[2] Esayan A. R., Chubarikov V. N., Dobrovolsky N. M., Yakushin A. V., Abdurazakov M., PTC Mathcad Prime 3.1, Tula gospeduniversitet, Tula, 2016, 400 pp.

[3] Esayan A. R., Chubarikov V. N., Dobrovolsky N. M., Shulyuov V. A., Programming in Maple, Tula gospeduniversitet, Tula, 2007, 334 pp.

[4] Esayan A. R., “Creating new tools in GeoGebra”, Problems of modernization of modern education, The reviewed collective monograph, Kaluga, 2016, 29–59

[5] Esayan A. R., Chubarikov V. N., Dobrovolsky N. M., Yakushin A. B., Maxima. The data and graphics, Tula gospeduniversitet, Tula, 2011, 367 pp.

[6] Esayan A. R., Chubarikov V. N., Dobrovolsky N. M., Yakushin A. B., Programming in Maxima, Tula gospeduniversitet, Tula, 2012, 351 pp.

[7] A. R. Esayan, V. N. Chubarikov, N. M. Dobrovolsky, The Creative laboratory Mathematica: System, data, and graphics, In 2 parts, v. 1, Tula gospeduniversitet, Tula, 2005, 296 pp.

[8] A. R. Esayan, V. N. Chubarikov, N. M. Dobrovolsky, The Creative laboratory Mathematica. Programming, functions, algebra and analysis, Tula gospeduniversitet, Tula, 2005, 258 pp.

[9] Kimberling C., “Triangle Centers and Central Triangles”, Congr. Numer., 129 (1998), 1–295 | MR

[10] Korn G., Korn T., Mathematical Handbook for Scientists and Engineers, Nauka, M., 1968

[11] Osipov N. N., “A computer proof of the theorem about incentro”, Mathematical education. Third series, 18, Ed. MTSNMO, M., 2014, 205–216

[12] Steingarts L. A., “Orbits of Zhukov and theorem of Morley”, Mathematics in school, 2012, no. 6, 53–61