Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_1_a4, author = {A. R. Esayan and N. N. Dobrovolsky}, title = {A computer proof of the hypothesis about of centroids}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {73--91}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_1_a4/} }
A. R. Esayan; N. N. Dobrovolsky. A computer proof of the hypothesis about of centroids. Čebyševskij sbornik, Tome 18 (2017) no. 1, pp. 73-91. http://geodesic.mathdoc.fr/item/CHEB_2017_18_1_a4/
[1] Akopyan A. V., Zaslavsky A. A., Geometric properties of curves of the second order, MTSNMO, M., 2007, 136 pp.
[2] Esayan A. R., Chubarikov V. N., Dobrovolsky N. M., Yakushin A. V., Abdurazakov M., PTC Mathcad Prime 3.1, Tula gospeduniversitet, Tula, 2016, 400 pp.
[3] Esayan A. R., Chubarikov V. N., Dobrovolsky N. M., Shulyuov V. A., Programming in Maple, Tula gospeduniversitet, Tula, 2007, 334 pp.
[4] Esayan A. R., “Creating new tools in GeoGebra”, Problems of modernization of modern education, The reviewed collective monograph, Kaluga, 2016, 29–59
[5] Esayan A. R., Chubarikov V. N., Dobrovolsky N. M., Yakushin A. B., Maxima. The data and graphics, Tula gospeduniversitet, Tula, 2011, 367 pp.
[6] Esayan A. R., Chubarikov V. N., Dobrovolsky N. M., Yakushin A. B., Programming in Maxima, Tula gospeduniversitet, Tula, 2012, 351 pp.
[7] A. R. Esayan, V. N. Chubarikov, N. M. Dobrovolsky, The Creative laboratory Mathematica: System, data, and graphics, In 2 parts, v. 1, Tula gospeduniversitet, Tula, 2005, 296 pp.
[8] A. R. Esayan, V. N. Chubarikov, N. M. Dobrovolsky, The Creative laboratory Mathematica. Programming, functions, algebra and analysis, Tula gospeduniversitet, Tula, 2005, 258 pp.
[9] Kimberling C., “Triangle Centers and Central Triangles”, Congr. Numer., 129 (1998), 1–295 | MR
[10] Korn G., Korn T., Mathematical Handbook for Scientists and Engineers, Nauka, M., 1968
[11] Osipov N. N., “A computer proof of the theorem about incentro”, Mathematical education. Third series, 18, Ed. MTSNMO, M., 2014, 205–216
[12] Steingarts L. A., “Orbits of Zhukov and theorem of Morley”, Mathematics in school, 2012, no. 6, 53–61