Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2017_18_1_a2, author = {A. M. Vetoshkin}, title = {Always nonsingular poliynomials of two projectors}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {44--64}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2017_18_1_a2/} }
A. M. Vetoshkin. Always nonsingular poliynomials of two projectors. Čebyševskij sbornik, Tome 18 (2017) no. 1, pp. 44-64. http://geodesic.mathdoc.fr/item/CHEB_2017_18_1_a2/
[1] Kh. D. Ikramov, “On simultaneous reduction of a pair of oblique projectors to block triangular form”, Comput. Math. Math. Phys., 38:2 (1998), 173–174 | MR | Zbl
[2] Kh. D. Ikramov, “Simultaneous reduction to block triangular form and theorems on pairs of complex idempotents”, Comput. Math. Math. Phys., 51:6 (2011), 915–918 | DOI | MR | Zbl
[3] Vetoshkin A. M., “Property of polinimials in two proectors”, Comput. Math. Math. Phys., 55:2 (2015), 179–182 | DOI | DOI | MR | Zbl
[4] A. George, Kh. D. Ikramov, “A note on the canonical form for a pair of orthoprojectors”, J. Math. Sci., 132:2 (2006), 153–155 | DOI | MR | Zbl
[5] Ikramov Kh. D., “A canonical form for projectors under unitary similarity”, Comput. Math. Math. Phys., 36:3 (1996), 279–281 | MR | Zbl
[6] Ikramov Kh. D., “The canonical form as a tool for proving the properties of projectors”, Comput. Math. Math. Phys., 40:9 (2000), 1233–1238 | MR | Zbl
[7] Ikramov Kh. D., “The quasidiagonalizability of oblique projectors as a particular case of the noncommutative spectral theorem”, Comput. Math. Math. Phys., 40:8 (2000), 1077–1084 | MR | Zbl
[8] Ikramov Kh. D., “Canonical forms of projectors with respect to unitary similarity and their applications”, Comput. Math. Math. Phys., 44:9 (2004), 1456–1461 | MR | Zbl
[9] Djokovic D. Z., “Unitary similarity of projectors”, Aequationes Mathematicae, 42 (1991), 220–224 | DOI | MR | Zbl
[10] Bottcher A., Spitkovsky I. M., “A gentle guide to the basics of two projections theory”, Linear Algebra Appl., 432 (2010), 1412–1459 | DOI | MR | Zbl
[11] Roch S., Silbermann B., “Algebras generated by idempotents and the symbol calculus for singular integral operators”, Integral Equat. Operator Theory, 11 (1988), 385–419 | DOI | MR | Zbl
[12] Gohberg I., Krupnik N., “Extension theorems for Fredholm and invertibility symbols”, Integral Equat. Operator Theory, 16 (1993), 514–529 | DOI | MR | Zbl
[13] Alpin Yu. A., Ikramov Kh. D., “Unitary similarity of algebras generated by pairs of orthoprojectors”, J. Math. Sci. (N. Y.), 137:3 (2006), 4763–4768 | Zbl
[14] Spitkovsky I. M., “Once more on algebras generated by two projections”, Linear Algebra Appl., 208 (1994), 377–395 | DOI | MR | Zbl
[15] Spitkovsky I. M., “On polinomials in two projections”, Electronic Journal of Linear Algebra, 15 (2006), 154–158 | DOI | MR | Zbl
[16] A. M. Vetoshkin, “Matrix polynomials in variable projectors that are projectors themselves”, Automation and Computerization of Data Processing Techniques and Technologies, 341, Mosk. Gos. Univ. Lesa, M., 2008, 69–78