Methods of estimating of incomplete Kloosterman sums
Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 79-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

This survey contains enlarged version of a mini-course which was read by the author in November 2015 during “Chinese - Russian workshop of exponential sums and sumsets”. This workshop was organized by professors Chaohua Jia (Institute of Mathematics, Academia Sinica) and Ke Gong (Henan University) in Academy of Mathematics and System Science, CAS (Beijing). The author is warmly grateful to them for the support and hospitality. The survey contains the Introduction, three parts and Conclusion. The basic definitions and results concerning the complete Kloosterman sums are given in the Introduction. The method of estimating of incomplete Kloosterman sums to moduli equal to the raising power of a fixed prime is described in the first part. This method is based on one idea of A. G. Postnikov which reduces the estimate of such sums to the estimate of the exponential sums with polynomial by I. M. Vinogradov's mean value theorem. A. A. Karatsuba's method of estimating of incomplete sums to an arbitrary moduli is described in the second part. This method is based on a very precise estimate of the number of solutions of one symmetric congruence involving inverse residues to a given modulus. This estimate plays the same role in thie problems under considering as Vinogradov's mean value theorem in the estimating of corresponding exponential sums. The method of J. Bourgain and M. Z. Garaev is described in the third part. This method is based on very deep “sum-product estimate” and on the improvement of A. A. Karatsuba's bound for the number of solutions of symmetric congruence. The Conclusion contains a series of recent results concerning the estimates of short Kloosterman sums. Bibliography: 57 titles.
Keywords: inverse residues, incomplete Kloosterman sums, method of Postnikov, method of Karatsuba, method of Bourgain and Garaev, Vinogradov's mean value theorem, sum-product estimate.
@article{CHEB_2016_17_4_a6,
     author = {M. A. Korolev},
     title = {Methods of estimating of incomplete {Kloosterman} sums},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {79--109},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a6/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - Methods of estimating of incomplete Kloosterman sums
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 79
EP  - 109
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a6/
LA  - ru
ID  - CHEB_2016_17_4_a6
ER  - 
%0 Journal Article
%A M. A. Korolev
%T Methods of estimating of incomplete Kloosterman sums
%J Čebyševskij sbornik
%D 2016
%P 79-109
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a6/
%G ru
%F CHEB_2016_17_4_a6
M. A. Korolev. Methods of estimating of incomplete Kloosterman sums. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 79-109. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a6/

[1] Salie H., “Über die Kloostermanschen Summen $S(u, v; q)$”, Math. Z., 34 (1931), 91–109 | DOI

[2] Whiteman A. L., “A note on Kloosterman sums”, Bull. Amer. Math. Soc., 51:6 (1945), 373–377 | DOI | MR | Zbl

[3] Williams K. S., “Note on the Kloosterman sum”, Proc. Amer. Math. Soc., 30:1 (1971), 61–62 | DOI | MR | Zbl

[4] Kloosterman H. D., “On the representation of numbers in the form $ax^{2} + by^{2} + cz^{2} + dt^{2}$”, Acta Math., 49 (1926), 407–464 | DOI | MR

[5] Vinogradow I. M., “On a certain trigonometrical expressions and its applications in the theory of numbers”, Compt. Rend. Acad. Sci. URSS. N.S., 5 (1933), 195–204 (Russian, English summary) | Zbl

[6] Vinogradow I. M., “Some trigonometrical polynomes and their applications”, Compt. Rend. Acad. Sci. URSS. N.S., 6 (1933), 249–255 (Russian, English summary) | Zbl

[7] Vinogradow I. M., “Trigonometrical polynomials for complicated moduli”, Compt. Rend. Acad. Sci. URSS. N.S., 5 (1934), 225–229 (Russian, English summary)

[8] Tolev D. I., An identity for the Kloosterman sum, 2010, arXiv: 1007.2054 [math.NT]

[9] Salie H., “Zur Abschätzung der Fourierkoeffizienten ganzer Modulformen”, Math. Z., 36 (1932), 263–278 | DOI | MR

[10] Davenport H., “On certain exponential sums”, J. reine angew. Math., 169 (1933), 158–176 | MR

[11] Weil A., “On some exponential sums”, Proc. Nat. Acad. Sci. USA, 34 (1948), 204–207 | DOI | MR | Zbl

[12] Stepanov S. A., “An estimation of Kloosterman sums”, Izv. Akad. Nauk SSSR Ser. Mat., 35:2 (1971), 308–323 | Zbl

[13] Korolev M. A., “On non-linear Kloosterman sum”, Chebyshevsk. sb., 17:1 (2016), 140–147

[14] A. A. Karatsuba, “Distribution of inverse values in a residue ring modulo a given number”, Russian Acad. Sci. Dokl. Math., 48:3 (1993), 452–454 | MR | Zbl

[15] A. A. Karatsuba, “Fractional parts of functions of a special form”, Izv. Math., 59:4 (1995), 721–740 | DOI | MR | Zbl

[16] A. A. Karatsuba, “Analogues of Kloosterman sums”, Izv. Math., 59:5 (1995), 971–981 | DOI | MR | Zbl

[17] A. A. Karatsuba, “Sums of fractional parts of functions of a special form”, Russian Acad. Sci. Dokl. Math., 54:1 (1996), 541

[18] A. A. Karatsuba, “Analogues of incomplete Kloosterman sums and their applications”, Tatra Mt. Math. Publ., 11 (1997), 89–120 | MR | Zbl

[19] A. A. Karatsuba, “Double Kloosterman sums”, Math. Notes, 66:5 (1999), 565–569 | DOI | DOI | MR | Zbl

[20] A. G. Postnikov, “On the sum of characters with respect to a modulus equal to a power of a prime number”, Izv. Akad. Nauk SSSR Ser. Mat., 19:1 (1955), 11–16 | Zbl

[21] Postnikov A. G., “On Dirichlet $L$-series with the character modulus equal to the power of a prime number”, J. Indian Math. Soc. (N.S.), 20 (1956), 217–226 | MR | Zbl

[22] M. A. Korolev, “Incomplete Kloosterman sums and their applications”, Izv. Math., 64:6 (2000), 1129–1152 | DOI | DOI | MR | Zbl

[23] J. Bourgain, M. Z. Garaev, “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. RAN. Ser. Mat., 78:4 (2014), 19–72 | DOI | Zbl

[24] Heath-Brown D. R., “Arithmetic applications of Kloosterman sums”, Nieuw. Arch. Wiskd., 5/1:4 (2000), 380–384 | MR | Zbl

[25] A. V. Ustinov, Applications of Kloosterman Sums in Arithmetic and Geometry, Lambert Academic Publishing, 2011 (Russian)

[26] I. M. Vinogradow, “New applications of trigonometrical polynomes”, Compt. Rend. Acad. Sci. URSS. N.S., 1 (1934), 10–14 (Russian, English summary)

[27] I. M. Vinogradow, “New asymptotic expressions”, Compt. Rend. Acad. Sci. URSS. N.S., 1 (1934), 49–51 (Russian, English summary)

[28] S. M. Rozin, “On null Dirichlet $L$-series”, Izv. Akad. Nauk SSSR Ser. Mat., 23:4 (1959), 503–508 | Zbl

[29] N. G. Chudakov, “On the zeros of Dirichlet $L$-functions for moduli equal to the powers of an odd prime”, Vestn. Leningr. State Univ. Ser. Mathem., mech. and astron., 1 (1966), 93–98 (Russian) | Zbl

[30] A. A. Karatsuba, “Trigonometric sums of a special type and their applications”, Izv. Akad. Nauk SSSR. Ser. Mat., 28:1 (1964), 237–248 | Zbl

[31] V. N. Chubarikov, “More precise band for zeroes of Dirichlet $L$-series in modul equal to power of a prime number”, Vestn. Moscow State Univ. Ser. Math. Mech., 2 (1973), 46–52 (Russian) | Zbl

[32] Burgess D. A., “The distribution of quadratic residues and non-residues”, Mathematika, 4:1 (1957), 106–112 | DOI | MR | Zbl

[33] Burgess D. A., “On character sums and primitive roots”, Proc. London Math. Soc. (3), 12 (1962), 179–192 | DOI | MR | Zbl

[34] Burgess D. A., “On character sums and $L$-series”, Proc. London Math. Soc. (3), 12 (1962), 193–206 | DOI | MR | Zbl

[35] A. A. Karatsuba, “Sums of characters over prime numbers”, Math. USSR-Izv., 4:2 (1970), 303–326 | DOI

[36] A. A. Kopaneva, “An estimate for short sums of Dirichlet characters over shifted primes”, Chebyshevsk. sb., 9:1 (2008), 122–143 | Zbl

[37] A. A. Kopaneva, E. A. Burlakova, “Evaluation of character sums over the continuous interval of summation”, Chebyshevsk. sb., 14:2 (2013), 118–122 | Zbl

[38] Stepanov S. A., Shparlinski I. E., “On the estimate of exponential sums with rational and algebraic functions”, Authomorphic functions and number theory, 1989, 5–18 (Russian)

[39] A. A. Karatsuba, Basics analytic number theory, Springer-Verlag, Berlin–Heidelberg, 1993 | MR

[40] A. A. Karatsuba, “Estimates of trigonometric sums of a special form, and their applications”, Dokl. Akad. Nauk SSSR, 137 (1961), 513–514 | Zbl

[41] A. A. Karatsuba, Rational trigonometric sums of a special form, and their applications, PhD Thesis, Moscow State Pedegogical Institute in the name of V. I. Lenin, M., 1962 (Russian)

[42] A. I. Vinogradov, “On the numbers with small prime factors”, Dokl. Akad. Nauk SSSR (N.S.), 109:4 (1956), 683–686 | Zbl

[43] M. A. Korolev, “On Karatsuba's method of estimating of Kloosterman sums”, Math. Sb., 207:8 (2016), 1142–1158 | DOI | DOI | MR

[44] K. Prachar, Primzahlverteilung, Springer-Verlag, 1957 | MR | Zbl

[45] Bourgain J., Garaev M. Z., “Kloosterman sums in residue rings”, Acta Arith., 164:1 (2014), 43–64 | DOI | MR | Zbl

[46] Bourgain J., “Multilinear exponential sums in prime fields under optimal entropy condition on the sources”, Geom. Funct. Anal., 18:5 (2009), 1477–1502 | DOI | MR | Zbl

[47] A. A. Karatsuba, S. M. Voronin, The Riemann zeta function, W. de Gruyter, Berlin–New York, 1992 | MR | Zbl

[48] Iwaniec H., “On zeros of Dirichlet $L$-series”, Invent. Math., 23 (1974), 97–104 | DOI | MR | Zbl

[49] M. A. Korolev, “Short Kloosterman sums to powerful modulus”, Doklady Mathematics, 94:2 (2016), 561–562 | DOI | DOI | Zbl

[50] Petridis G., Shparlinski I. E., Bounds of trilinear and quadrilinear exponential sums, arXiv: 1604.08469v2 [math.NT]

[51] M. A. Korolev, “Short Kloosterman sums of modulo prime”, Mat. Zametki, 100:6 (2016), 843–851

[52] Hajela D., Pollington A., Smith B., “On Kloosterman sums with oscillating coefficients”, Canad. Math. Bull., 31:1 (1988), 32–36 | DOI | MR | Zbl

[53] Chinese J. Contemp. Math., 19 (1998), 185–191 | MR | Zbl

[54] Deng P., “On Kloosterman sums with oscillating coefficients”, Canad. Math. Bull., 42:3 (1999), 285–290 | DOI | MR | Zbl

[55] Gong K., Jia C., “Kloosterman sums with multiplicative coefficients”, Sci. China Math., 59:4 (2016), 653–660 | DOI | MR | Zbl

[56] M. A. Korolev, “Short Kloosterman Sums with Weights”, Math. Notes, 88:3 (2010), 374–385 | DOI | DOI | MR | Zbl

[57] Korolev M. A., On Kloosterman sums with multiplicative coefficients, arXiv: 1610.09171 [math.NT]