Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_4_a6, author = {M. A. Korolev}, title = {Methods of estimating of incomplete {Kloosterman} sums}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {79--109}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a6/} }
M. A. Korolev. Methods of estimating of incomplete Kloosterman sums. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 79-109. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a6/
[1] Salie H., “Über die Kloostermanschen Summen $S(u, v; q)$”, Math. Z., 34 (1931), 91–109 | DOI
[2] Whiteman A. L., “A note on Kloosterman sums”, Bull. Amer. Math. Soc., 51:6 (1945), 373–377 | DOI | MR | Zbl
[3] Williams K. S., “Note on the Kloosterman sum”, Proc. Amer. Math. Soc., 30:1 (1971), 61–62 | DOI | MR | Zbl
[4] Kloosterman H. D., “On the representation of numbers in the form $ax^{2} + by^{2} + cz^{2} + dt^{2}$”, Acta Math., 49 (1926), 407–464 | DOI | MR
[5] Vinogradow I. M., “On a certain trigonometrical expressions and its applications in the theory of numbers”, Compt. Rend. Acad. Sci. URSS. N.S., 5 (1933), 195–204 (Russian, English summary) | Zbl
[6] Vinogradow I. M., “Some trigonometrical polynomes and their applications”, Compt. Rend. Acad. Sci. URSS. N.S., 6 (1933), 249–255 (Russian, English summary) | Zbl
[7] Vinogradow I. M., “Trigonometrical polynomials for complicated moduli”, Compt. Rend. Acad. Sci. URSS. N.S., 5 (1934), 225–229 (Russian, English summary)
[8] Tolev D. I., An identity for the Kloosterman sum, 2010, arXiv: 1007.2054 [math.NT]
[9] Salie H., “Zur Abschätzung der Fourierkoeffizienten ganzer Modulformen”, Math. Z., 36 (1932), 263–278 | DOI | MR
[10] Davenport H., “On certain exponential sums”, J. reine angew. Math., 169 (1933), 158–176 | MR
[11] Weil A., “On some exponential sums”, Proc. Nat. Acad. Sci. USA, 34 (1948), 204–207 | DOI | MR | Zbl
[12] Stepanov S. A., “An estimation of Kloosterman sums”, Izv. Akad. Nauk SSSR Ser. Mat., 35:2 (1971), 308–323 | Zbl
[13] Korolev M. A., “On non-linear Kloosterman sum”, Chebyshevsk. sb., 17:1 (2016), 140–147
[14] A. A. Karatsuba, “Distribution of inverse values in a residue ring modulo a given number”, Russian Acad. Sci. Dokl. Math., 48:3 (1993), 452–454 | MR | Zbl
[15] A. A. Karatsuba, “Fractional parts of functions of a special form”, Izv. Math., 59:4 (1995), 721–740 | DOI | MR | Zbl
[16] A. A. Karatsuba, “Analogues of Kloosterman sums”, Izv. Math., 59:5 (1995), 971–981 | DOI | MR | Zbl
[17] A. A. Karatsuba, “Sums of fractional parts of functions of a special form”, Russian Acad. Sci. Dokl. Math., 54:1 (1996), 541
[18] A. A. Karatsuba, “Analogues of incomplete Kloosterman sums and their applications”, Tatra Mt. Math. Publ., 11 (1997), 89–120 | MR | Zbl
[19] A. A. Karatsuba, “Double Kloosterman sums”, Math. Notes, 66:5 (1999), 565–569 | DOI | DOI | MR | Zbl
[20] A. G. Postnikov, “On the sum of characters with respect to a modulus equal to a power of a prime number”, Izv. Akad. Nauk SSSR Ser. Mat., 19:1 (1955), 11–16 | Zbl
[21] Postnikov A. G., “On Dirichlet $L$-series with the character modulus equal to the power of a prime number”, J. Indian Math. Soc. (N.S.), 20 (1956), 217–226 | MR | Zbl
[22] M. A. Korolev, “Incomplete Kloosterman sums and their applications”, Izv. Math., 64:6 (2000), 1129–1152 | DOI | DOI | MR | Zbl
[23] J. Bourgain, M. Z. Garaev, “Sumsets of reciprocals in prime fields and multilinear Kloosterman sums”, Izv. RAN. Ser. Mat., 78:4 (2014), 19–72 | DOI | Zbl
[24] Heath-Brown D. R., “Arithmetic applications of Kloosterman sums”, Nieuw. Arch. Wiskd., 5/1:4 (2000), 380–384 | MR | Zbl
[25] A. V. Ustinov, Applications of Kloosterman Sums in Arithmetic and Geometry, Lambert Academic Publishing, 2011 (Russian)
[26] I. M. Vinogradow, “New applications of trigonometrical polynomes”, Compt. Rend. Acad. Sci. URSS. N.S., 1 (1934), 10–14 (Russian, English summary)
[27] I. M. Vinogradow, “New asymptotic expressions”, Compt. Rend. Acad. Sci. URSS. N.S., 1 (1934), 49–51 (Russian, English summary)
[28] S. M. Rozin, “On null Dirichlet $L$-series”, Izv. Akad. Nauk SSSR Ser. Mat., 23:4 (1959), 503–508 | Zbl
[29] N. G. Chudakov, “On the zeros of Dirichlet $L$-functions for moduli equal to the powers of an odd prime”, Vestn. Leningr. State Univ. Ser. Mathem., mech. and astron., 1 (1966), 93–98 (Russian) | Zbl
[30] A. A. Karatsuba, “Trigonometric sums of a special type and their applications”, Izv. Akad. Nauk SSSR. Ser. Mat., 28:1 (1964), 237–248 | Zbl
[31] V. N. Chubarikov, “More precise band for zeroes of Dirichlet $L$-series in modul equal to power of a prime number”, Vestn. Moscow State Univ. Ser. Math. Mech., 2 (1973), 46–52 (Russian) | Zbl
[32] Burgess D. A., “The distribution of quadratic residues and non-residues”, Mathematika, 4:1 (1957), 106–112 | DOI | MR | Zbl
[33] Burgess D. A., “On character sums and primitive roots”, Proc. London Math. Soc. (3), 12 (1962), 179–192 | DOI | MR | Zbl
[34] Burgess D. A., “On character sums and $L$-series”, Proc. London Math. Soc. (3), 12 (1962), 193–206 | DOI | MR | Zbl
[35] A. A. Karatsuba, “Sums of characters over prime numbers”, Math. USSR-Izv., 4:2 (1970), 303–326 | DOI
[36] A. A. Kopaneva, “An estimate for short sums of Dirichlet characters over shifted primes”, Chebyshevsk. sb., 9:1 (2008), 122–143 | Zbl
[37] A. A. Kopaneva, E. A. Burlakova, “Evaluation of character sums over the continuous interval of summation”, Chebyshevsk. sb., 14:2 (2013), 118–122 | Zbl
[38] Stepanov S. A., Shparlinski I. E., “On the estimate of exponential sums with rational and algebraic functions”, Authomorphic functions and number theory, 1989, 5–18 (Russian)
[39] A. A. Karatsuba, Basics analytic number theory, Springer-Verlag, Berlin–Heidelberg, 1993 | MR
[40] A. A. Karatsuba, “Estimates of trigonometric sums of a special form, and their applications”, Dokl. Akad. Nauk SSSR, 137 (1961), 513–514 | Zbl
[41] A. A. Karatsuba, Rational trigonometric sums of a special form, and their applications, PhD Thesis, Moscow State Pedegogical Institute in the name of V. I. Lenin, M., 1962 (Russian)
[42] A. I. Vinogradov, “On the numbers with small prime factors”, Dokl. Akad. Nauk SSSR (N.S.), 109:4 (1956), 683–686 | Zbl
[43] M. A. Korolev, “On Karatsuba's method of estimating of Kloosterman sums”, Math. Sb., 207:8 (2016), 1142–1158 | DOI | DOI | MR
[44] K. Prachar, Primzahlverteilung, Springer-Verlag, 1957 | MR | Zbl
[45] Bourgain J., Garaev M. Z., “Kloosterman sums in residue rings”, Acta Arith., 164:1 (2014), 43–64 | DOI | MR | Zbl
[46] Bourgain J., “Multilinear exponential sums in prime fields under optimal entropy condition on the sources”, Geom. Funct. Anal., 18:5 (2009), 1477–1502 | DOI | MR | Zbl
[47] A. A. Karatsuba, S. M. Voronin, The Riemann zeta function, W. de Gruyter, Berlin–New York, 1992 | MR | Zbl
[48] Iwaniec H., “On zeros of Dirichlet $L$-series”, Invent. Math., 23 (1974), 97–104 | DOI | MR | Zbl
[49] M. A. Korolev, “Short Kloosterman sums to powerful modulus”, Doklady Mathematics, 94:2 (2016), 561–562 | DOI | DOI | Zbl
[50] Petridis G., Shparlinski I. E., Bounds of trilinear and quadrilinear exponential sums, arXiv: 1604.08469v2 [math.NT]
[51] M. A. Korolev, “Short Kloosterman sums of modulo prime”, Mat. Zametki, 100:6 (2016), 843–851
[52] Hajela D., Pollington A., Smith B., “On Kloosterman sums with oscillating coefficients”, Canad. Math. Bull., 31:1 (1988), 32–36 | DOI | MR | Zbl
[53] Chinese J. Contemp. Math., 19 (1998), 185–191 | MR | Zbl
[54] Deng P., “On Kloosterman sums with oscillating coefficients”, Canad. Math. Bull., 42:3 (1999), 285–290 | DOI | MR | Zbl
[55] Gong K., Jia C., “Kloosterman sums with multiplicative coefficients”, Sci. China Math., 59:4 (2016), 653–660 | DOI | MR | Zbl
[56] M. A. Korolev, “Short Kloosterman Sums with Weights”, Math. Notes, 88:3 (2010), 374–385 | DOI | DOI | MR | Zbl
[57] Korolev M. A., On Kloosterman sums with multiplicative coefficients, arXiv: 1610.09171 [math.NT]