The mixed joint functional independence of the Riemann zeta- and periodic Hurwitz zeta-functions
Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 57-64

Voir la notice de l'article provenant de la source Math-Net.Ru

The functional independence of zeta-functions is an interesting nowadays problem. This problem comes back to D. Hilbert. In 1900, at the International Congress of Mathematicians in Paris, he conjectured that the Riemman zeta-function does not satisfy any algebraic-differential equation. This conjecture was solved by A. Ostrowski. In 1975, S.M. Voronin proved the functional independence of the Riemann zeta-function. After that many mathematicians obtained the functional independence of certain zeta- and $L$-functions. In the present paper, the joint functional independence of a collection consisting of the Riemann zeta-function and several periodic Hurwitz zeta-functions with parameters algebraically independent over the field of rational numbers is obtained. Such type of functional independence is called as “mixed functional independence” since the Riemann zeta-function has Euler product expansion over primes while the periodic Hurwitz zeta-functions do not have Euler product. Bibliography: 17 titles.
Keywords: functional independence, Hurwitz zeta-function, periodic coefficients, Riemann zeta-function, universality.
@article{CHEB_2016_17_4_a4,
     author = {R. Ka\v{c}inskait\.{e} and S. Rapimbergait\.{e}},
     title = {The mixed joint functional independence of the {Riemann} zeta- and periodic {Hurwitz} zeta-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {57--64},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a4/}
}
TY  - JOUR
AU  - R. Kačinskaitė
AU  - S. Rapimbergaitė
TI  - The mixed joint functional independence of the Riemann zeta- and periodic Hurwitz zeta-functions
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 57
EP  - 64
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a4/
LA  - ru
ID  - CHEB_2016_17_4_a4
ER  - 
%0 Journal Article
%A R. Kačinskaitė
%A S. Rapimbergaitė
%T The mixed joint functional independence of the Riemann zeta- and periodic Hurwitz zeta-functions
%J Čebyševskij sbornik
%D 2016
%P 57-64
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a4/
%G ru
%F CHEB_2016_17_4_a4
R. Kačinskaitė; S. Rapimbergaitė. The mixed joint functional independence of the Riemann zeta- and periodic Hurwitz zeta-functions. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 57-64. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a4/