The mixed joint functional independence of the Riemann zeta- and periodic Hurwitz zeta-functions
Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 57-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The functional independence of zeta-functions is an interesting nowadays problem. This problem comes back to D. Hilbert. In 1900, at the International Congress of Mathematicians in Paris, he conjectured that the Riemman zeta-function does not satisfy any algebraic-differential equation. This conjecture was solved by A. Ostrowski. In 1975, S.M. Voronin proved the functional independence of the Riemann zeta-function. After that many mathematicians obtained the functional independence of certain zeta- and $L$-functions. In the present paper, the joint functional independence of a collection consisting of the Riemann zeta-function and several periodic Hurwitz zeta-functions with parameters algebraically independent over the field of rational numbers is obtained. Such type of functional independence is called as “mixed functional independence” since the Riemann zeta-function has Euler product expansion over primes while the periodic Hurwitz zeta-functions do not have Euler product. Bibliography: 17 titles.
Keywords: functional independence, Hurwitz zeta-function, periodic coefficients, Riemann zeta-function, universality.
@article{CHEB_2016_17_4_a4,
     author = {R. Ka\v{c}inskait\.{e} and S. Rapimbergait\.{e}},
     title = {The mixed joint functional independence of the {Riemann} zeta- and periodic {Hurwitz} zeta-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {57--64},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a4/}
}
TY  - JOUR
AU  - R. Kačinskaitė
AU  - S. Rapimbergaitė
TI  - The mixed joint functional independence of the Riemann zeta- and periodic Hurwitz zeta-functions
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 57
EP  - 64
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a4/
LA  - ru
ID  - CHEB_2016_17_4_a4
ER  - 
%0 Journal Article
%A R. Kačinskaitė
%A S. Rapimbergaitė
%T The mixed joint functional independence of the Riemann zeta- and periodic Hurwitz zeta-functions
%J Čebyševskij sbornik
%D 2016
%P 57-64
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a4/
%G ru
%F CHEB_2016_17_4_a4
R. Kačinskaitė; S. Rapimbergaitė. The mixed joint functional independence of the Riemann zeta- and periodic Hurwitz zeta-functions. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 57-64. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a4/

[1] Hölder O., “Über die Eigenschaft der Gamafunktion keiner algebraischen Differentialgleichung zu genugen”, Math. Ann., 28 (1887), 1–13 | DOI

[2] Hilbert D., “Mathematische Probleme”, Nachr. Konigl. Ges. Wiss. Gottingen, Math.-Phys. Kl., 1900, 253–297 | Zbl

[3] Ostrowski A., “Über Dirichletsche reihen und algebraische Differentialgleichungen”, Math. Z., 8 (1920), 241–298 | DOI | MR | Zbl

[4] Postnikov A. G., “On the differential independence of Dirichlet series”, Dokl. Akad. Nauk SSSR, 66:4 (1949), 561–564 (in Russian) | MR | Zbl

[5] Postnikov A. G., “Generalization of one of Hilbert's problems”, Dokl. Akad. Nauk SSSR, 107:4 (1956), 512–515 (in Russian) | MR | Zbl

[6] Voronin S. M., “On the functional independence of Dirichlet $L$-functions”, Acta Arith., 27 (1975), 493–503 (in Russian) | MR | Zbl

[7] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996 | MR

[8] Steuding J., Value-Distribution of $L$-functions, Lecture Notes in Math., 1877, Springer Verlag, Berlin etc., 2007 | MR | Zbl

[9] Mishou H., “The joint value-distribution of the Rieman zeta function and Hurwitz zeta functions”, Lith. Math. J., 47 (2007), 32–47 | DOI | MR | Zbl

[10] Kačinskaitė R., Laurinčikas A., “The joint distribution of periodic zeta-functions”, Stud. Scien. Math. Hungarica, 48:2 (2011), 257–279 | MR

[11] Riemann B., “Über die Anzahl der Primzahlen unterhalb einer gegebenen Grösse”, Monatsber. Preuss Akad. Wiss. Berlin, 1859, 671–680

[12] Javtokas A., Laurinčikas A., “On the periodic Hurwitz zeta-function”, Hardy-Ramanujan J., 29 (2006), 18–36 | MR | Zbl

[13] Mat. Zametki, 83:1 (2008), 69–78 (in Russian) | MR | Zbl

[14] Genys J., Macaitienė R., Račkauskienė S., Šiaučiūnas D., “A mixed joint universality theorem for zeta-functions”, Math. Model. Anal., 15:4 (2010), 431–446 | DOI | MR | Zbl

[15] Laurinčikas A., Šiaučiūnas D., “A mixed joint universality theorem for zeta-functions. III”, Analytic Probab. Methods Number Theory, J. Kubilius Memorial Volume, eds. A. Laurinčikas et al., TEV, Vilnius, 2012, 185–195 | MR | Zbl

[16] Pocevičienė V., Šiaučiūnas D., “A mixed joint universality theorem for zeta-functions. II”, Math. Modell. and Analysis, 19 (2014), 52–65 | DOI | MR

[17] Macaitienė R., “Mixed joint universality for $L$-functions from Selberg's class and periodic Huriwtz zeta-functions”, Chebyshevskii Sb., 16:1 (2015), 219–231 | MR