Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_4_a3, author = {A. N. Vassilyev}, title = {Romanoff additive theorem's proof and its analogues}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {51--56}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a3/} }
A. N. Vassilyev. Romanoff additive theorem's proof and its analogues. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 51-56. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a3/
[1] Romanoff N. P., “Über einige Sätze der additiven Zahlentheorie”, Math. Ann., 57 (1934), 668–678 | DOI | MR
[2] Brun V., “‘Le crible d’Eratosthene et le theoreme de Goldbach”, C. R. Acad. Sci. Paris, 168 (1919), 544–546 | Zbl
[3] Dubickas A., “Sums of Primes and Quadratic Linear Recurrence Sequences”, Acta Mathematica Sinica, English Series, 29 (2013), 2251–2260 | DOI | MR | Zbl
[4] Erdos P., “On some problems of Bellman and a theorem of Romanoff”, J. Chinese Math., 1951, 409–421 | MR
[5] Enoch Lee K. S., “On the sum of a prime and a Fibonacci number”, Int. J. Number Theory, 6 (2010), 1669–1676 | DOI | MR | Zbl
[6] Vasil'ev A. N., “Rational trigonometric sums for Fibonacci sequences and an analogue of Romanoff's theorem”, Doklady Mathematics, 89:3 (2014), 349–350 | DOI | MR | Zbl
[7] Ballot C., Luca F., “On the sumset of the primes and a linear recurrence”, Acta Arithmetica, 161 (2013), 33–46 | DOI | MR | Zbl
[8] Pomerance C., “Divisors of the Middle Binomial Coefficient”, American Mathematical Monthly, 122 (2015), 636–644 | DOI | MR | Zbl
[9] Kummer E., “Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen”, Journal für die reine und angewandte Mathematik, 44 (1852), 93–146 | DOI | MR | Zbl