Romanoff additive theorem's proof and its analogues
Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 51-56

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper we describe the way N. P. Romanoff proved his additive theorem and sufficient conditions to obtain its analogues for sets with similar distribution and arithmetic. Also the example of set with similar distribution but with different arithmetic is given. We prove that the Romanoff theorem's analogue for this set is incorrect. Bibliography: 9 titles.
Keywords: Romanoff theorem, sumset, exponential sums.
@article{CHEB_2016_17_4_a3,
     author = {A. N. Vassilyev},
     title = {Romanoff additive theorem's proof and its analogues},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {51--56},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a3/}
}
TY  - JOUR
AU  - A. N. Vassilyev
TI  - Romanoff additive theorem's proof and its analogues
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 51
EP  - 56
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a3/
LA  - ru
ID  - CHEB_2016_17_4_a3
ER  - 
%0 Journal Article
%A A. N. Vassilyev
%T Romanoff additive theorem's proof and its analogues
%J Čebyševskij sbornik
%D 2016
%P 51-56
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a3/
%G ru
%F CHEB_2016_17_4_a3
A. N. Vassilyev. Romanoff additive theorem's proof and its analogues. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 51-56. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a3/