Romanoff additive theorem's proof and its analogues
Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 51-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper we describe the way N. P. Romanoff proved his additive theorem and sufficient conditions to obtain its analogues for sets with similar distribution and arithmetic. Also the example of set with similar distribution but with different arithmetic is given. We prove that the Romanoff theorem's analogue for this set is incorrect. Bibliography: 9 titles.
Keywords: Romanoff theorem, sumset, exponential sums.
@article{CHEB_2016_17_4_a3,
     author = {A. N. Vassilyev},
     title = {Romanoff additive theorem's proof and its analogues},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {51--56},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a3/}
}
TY  - JOUR
AU  - A. N. Vassilyev
TI  - Romanoff additive theorem's proof and its analogues
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 51
EP  - 56
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a3/
LA  - ru
ID  - CHEB_2016_17_4_a3
ER  - 
%0 Journal Article
%A A. N. Vassilyev
%T Romanoff additive theorem's proof and its analogues
%J Čebyševskij sbornik
%D 2016
%P 51-56
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a3/
%G ru
%F CHEB_2016_17_4_a3
A. N. Vassilyev. Romanoff additive theorem's proof and its analogues. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 51-56. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a3/

[1] Romanoff N. P., “Über einige Sätze der additiven Zahlentheorie”, Math. Ann., 57 (1934), 668–678 | DOI | MR

[2] Brun V., “‘Le crible d’Eratosthene et le theoreme de Goldbach”, C. R. Acad. Sci. Paris, 168 (1919), 544–546 | Zbl

[3] Dubickas A., “Sums of Primes and Quadratic Linear Recurrence Sequences”, Acta Mathematica Sinica, English Series, 29 (2013), 2251–2260 | DOI | MR | Zbl

[4] Erdos P., “On some problems of Bellman and a theorem of Romanoff”, J. Chinese Math., 1951, 409–421 | MR

[5] Enoch Lee K. S., “On the sum of a prime and a Fibonacci number”, Int. J. Number Theory, 6 (2010), 1669–1676 | DOI | MR | Zbl

[6] Vasil'ev A. N., “Rational trigonometric sums for Fibonacci sequences and an analogue of Romanoff's theorem”, Doklady Mathematics, 89:3 (2014), 349–350 | DOI | MR | Zbl

[7] Ballot C., Luca F., “On the sumset of the primes and a linear recurrence”, Acta Arithmetica, 161 (2013), 33–46 | DOI | MR | Zbl

[8] Pomerance C., “Divisors of the Middle Binomial Coefficient”, American Mathematical Monthly, 122 (2015), 636–644 | DOI | MR | Zbl

[9] Kummer E., “Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen”, Journal für die reine und angewandte Mathematik, 44 (1852), 93–146 | DOI | MR | Zbl