On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p 1$ for $p > 1$
Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 185-193

Voir la notice de l'article provenant de la source Math-Net.Ru

We present A. V. Malyshev's approach to Minkowski's conjecture (in Davis's amendment) concerning the critical determinant of the region $|x|^p + |y|^p 1$ for $p > 1$ and Malyshev's method. In the sequel of this article we use these approach and method to obtain the main result. Bibliography: 21 titles.
Keywords: critical lattice; critical determinant; Diophantine inequality; Diophantine approximation; distance function; star body; moduli space.
@article{CHEB_2016_17_4_a14,
     author = {N. M. Glazunov},
     title = {On {A.\,V.~Malyshev's} approach to {Minkowski's} conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {185--193},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/}
}
TY  - JOUR
AU  - N. M. Glazunov
TI  - On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 185
EP  - 193
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/
LA  - en
ID  - CHEB_2016_17_4_a14
ER  - 
%0 Journal Article
%A N. M. Glazunov
%T On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$
%J Čebyševskij sbornik
%D 2016
%P 185-193
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/
%G en
%F CHEB_2016_17_4_a14
N. M. Glazunov. On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 185-193. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/