Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_4_a14, author = {N. M. Glazunov}, title = {On {A.\,V.~Malyshev's} approach to {Minkowski's} conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {185--193}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/} }
TY - JOUR AU - N. M. Glazunov TI - On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$ JO - Čebyševskij sbornik PY - 2016 SP - 185 EP - 193 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/ LA - en ID - CHEB_2016_17_4_a14 ER -
%0 Journal Article %A N. M. Glazunov %T On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$ %J Čebyševskij sbornik %D 2016 %P 185-193 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/ %G en %F CHEB_2016_17_4_a14
N. M. Glazunov. On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 185-193. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/