Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_4_a14, author = {N. M. Glazunov}, title = {On {A.\,V.~Malyshev's} approach to {Minkowski's} conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {185--193}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/} }
TY - JOUR AU - N. M. Glazunov TI - On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$ JO - Čebyševskij sbornik PY - 2016 SP - 185 EP - 193 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/ LA - en ID - CHEB_2016_17_4_a14 ER -
%0 Journal Article %A N. M. Glazunov %T On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$ %J Čebyševskij sbornik %D 2016 %P 185-193 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/ %G en %F CHEB_2016_17_4_a14
N. M. Glazunov. On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 185-193. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/
[1] Korkin A., Zolotarev G., “Sur les formes quadratiques positives quaternaires”, Math. Ann., 5 (1872), 581–583 | DOI | MR | Zbl
[2] H. Minkowski, Diophantische Approximationen, Teubner, Leipzig, 1907 | Zbl
[3] H. Minkowski, Geometrie der Zahlen, Teubner, Berlin–Leipzig, 1910 | Zbl
[4] L. J. Mordell, “Lattice points in the region $\vert Ax^4\vert + \vert By^4 \vert \geq 1$”, J. London Math. Soc., 16 (1941), 152–156 | DOI | MR
[5] C. Davis, “Note on a conjecture by Minkowski”, J. London Math. Soc., 23 (1948), 172–175 | DOI | MR
[6] J. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin, 1971 | MR | Zbl
[7] H. Cohn, “Minkowski's conjectures on critical lattices in the metric $\{\vert\xi \vert^p+\vert\eta \vert^p \}^{{1}/{p}}$”, Annals of Math., 51:2 (1950), 734–738 | DOI | MR | Zbl
[8] G. Watson, “Minkowski's conjecture on the critical lattices of the region $|x|^p+|y|^p\leq 1$. I; II”, Jour. London Math. Soc., 28:3 (1953), 305–309 ; 4, 402–410 | DOI | MR | Zbl | Zbl
[9] A. Malyshev, “Application of computers to the proof of a conjecture of Minkowski's from geometry of numbers. I”, Zap. Nauchn. Semin. LOMI, 71, 1977, 163–180 | MR | Zbl
[10] A. Malyshev, “Application of computers to the proof of a conjecture of Minkowski's from geometry of numbers. II”, Zap. Nauchn. Semin. LOMI, 82, 1979, 29–32 | MR | Zbl
[11] A. Malyshev, A. Voronetsky, “The proof of Minkowski's conjecture concerning the critical determinant of the region $|x|^p+|y|^p1$ for $p > 6$”, Acta arithm., 71 (1975), 447–458 | MR
[12] N. Glazunov, A. V. Malyshev, “On Minkowski's critical determinant conjecture”, Kibernetika, 1985, no. 5, 10–14 | MR | Zbl
[13] N. Glazunov, A. Malyshev, “The proof of Minkowski`s conjecture concerning the critical determinant of the region $ |x|^p + |y|^p 1 $ near $ p = 2$”, Doklady Akad. Nauk Ukr. SSR, ser. A, 7 (9–12), 1986 (in Russian) | Zbl
[14] N. Glazunov, A. Golovanov, A. Malyshev, “Proof of Minkowski's hypothesis about the critical determinant of $|x|^p+|y|^p1$ domain”, Research in Number Theory 9, Notes of scientific seminars of LOMI, 151, Nauka, L., 1986, 40–53 | MR | Zbl
[15] Mumford D., “Towards an Enumerative Geometry of the Moduli Space of Curves”, Arithmetic and Geometry, v. II, Progress in Math., 1983, 271–328 | MR | Zbl
[16] Harris J., Morrison J., Moduli of curves, GTM, 187, Springer, Berlin–N.Y., 1998 | MR | Zbl
[17] R. E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, NJ, 1966 | MR | Zbl
[18] G. Alefeld, J. Herzberger, Introduction to Interval Computations, Academic Press, NY, 1983 | MR | Zbl
[19] Yu. I. Shokin, Interval'nij Analiz, Nauka. Sib. District., Novosibirsk, 1981 (in Russian)
[20] R. Baker Kearfott, V. Kreinovich (eds.), Applications of Interval Computations, Kluwer Academic Publlishers, 1996 | MR
[21] W. Krämer, J. Wolff von Gudenberg (eds.), Scientific Computing, Validated Numerics, Interval Methods, Kluwer Academic/Plenum Publlishers, NY, 2001
[22] N. M. Glazunov, “Interval arithmetics for evaluation of real functions and its implementation on vector-pipeline computers”, Kernel Software for Supercomputers, Issues of Cybernetics, Acad. of Sci. USSR, M., 1990, 91–101 (in Russian)