On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p 1$ for $p > 1$
Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 185-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present A. V. Malyshev's approach to Minkowski's conjecture (in Davis's amendment) concerning the critical determinant of the region $|x|^p + |y|^p 1$ for $p > 1$ and Malyshev's method. In the sequel of this article we use these approach and method to obtain the main result. Bibliography: 21 titles.
Keywords: critical lattice; critical determinant; Diophantine inequality; Diophantine approximation; distance function; star body; moduli space.
@article{CHEB_2016_17_4_a14,
     author = {N. M. Glazunov},
     title = {On {A.\,V.~Malyshev's} approach to {Minkowski's} conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {185--193},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/}
}
TY  - JOUR
AU  - N. M. Glazunov
TI  - On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 185
EP  - 193
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/
LA  - en
ID  - CHEB_2016_17_4_a14
ER  - 
%0 Journal Article
%A N. M. Glazunov
%T On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$
%J Čebyševskij sbornik
%D 2016
%P 185-193
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/
%G en
%F CHEB_2016_17_4_a14
N. M. Glazunov. On A.\,V.~Malyshev's approach to Minkowski's conjecture concerning the critical determinant of the region $|x|^p + |y|^p < 1$ for $p > 1$. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 185-193. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a14/

[1] Korkin A., Zolotarev G., “Sur les formes quadratiques positives quaternaires”, Math. Ann., 5 (1872), 581–583 | DOI | MR | Zbl

[2] H. Minkowski, Diophantische Approximationen, Teubner, Leipzig, 1907 | Zbl

[3] H. Minkowski, Geometrie der Zahlen, Teubner, Berlin–Leipzig, 1910 | Zbl

[4] L. J. Mordell, “Lattice points in the region $\vert Ax^4\vert + \vert By^4 \vert \geq 1$”, J. London Math. Soc., 16 (1941), 152–156 | DOI | MR

[5] C. Davis, “Note on a conjecture by Minkowski”, J. London Math. Soc., 23 (1948), 172–175 | DOI | MR

[6] J. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin, 1971 | MR | Zbl

[7] H. Cohn, “Minkowski's conjectures on critical lattices in the metric $\{\vert\xi \vert^p+\vert\eta \vert^p \}^{{1}/{p}}$”, Annals of Math., 51:2 (1950), 734–738 | DOI | MR | Zbl

[8] G. Watson, “Minkowski's conjecture on the critical lattices of the region $|x|^p+|y|^p\leq 1$. I; II”, Jour. London Math. Soc., 28:3 (1953), 305–309 ; 4, 402–410 | DOI | MR | Zbl | Zbl

[9] A. Malyshev, “Application of computers to the proof of a conjecture of Minkowski's from geometry of numbers. I”, Zap. Nauchn. Semin. LOMI, 71, 1977, 163–180 | MR | Zbl

[10] A. Malyshev, “Application of computers to the proof of a conjecture of Minkowski's from geometry of numbers. II”, Zap. Nauchn. Semin. LOMI, 82, 1979, 29–32 | MR | Zbl

[11] A. Malyshev, A. Voronetsky, “The proof of Minkowski's conjecture concerning the critical determinant of the region $|x|^p+|y|^p1$ for $p > 6$”, Acta arithm., 71 (1975), 447–458 | MR

[12] N. Glazunov, A. V. Malyshev, “On Minkowski's critical determinant conjecture”, Kibernetika, 1985, no. 5, 10–14 | MR | Zbl

[13] N. Glazunov, A. Malyshev, “The proof of Minkowski`s conjecture concerning the critical determinant of the region $ |x|^p + |y|^p 1 $ near $ p = 2$”, Doklady Akad. Nauk Ukr. SSR, ser. A, 7 (9–12), 1986 (in Russian) | Zbl

[14] N. Glazunov, A. Golovanov, A. Malyshev, “Proof of Minkowski's hypothesis about the critical determinant of $|x|^p+|y|^p1$ domain”, Research in Number Theory 9, Notes of scientific seminars of LOMI, 151, Nauka, L., 1986, 40–53 | MR | Zbl

[15] Mumford D., “Towards an Enumerative Geometry of the Moduli Space of Curves”, Arithmetic and Geometry, v. II, Progress in Math., 1983, 271–328 | MR | Zbl

[16] Harris J., Morrison J., Moduli of curves, GTM, 187, Springer, Berlin–N.Y., 1998 | MR | Zbl

[17] R. E. Moore, Interval Analysis, Prentice Hall, Englewood Cliffs, NJ, 1966 | MR | Zbl

[18] G. Alefeld, J. Herzberger, Introduction to Interval Computations, Academic Press, NY, 1983 | MR | Zbl

[19] Yu. I. Shokin, Interval'nij Analiz, Nauka. Sib. District., Novosibirsk, 1981 (in Russian)

[20] R. Baker Kearfott, V. Kreinovich (eds.), Applications of Interval Computations, Kluwer Academic Publlishers, 1996 | MR

[21] W. Krämer, J. Wolff von Gudenberg (eds.), Scientific Computing, Validated Numerics, Interval Methods, Kluwer Academic/Plenum Publlishers, NY, 2001

[22] N. M. Glazunov, “Interval arithmetics for evaluation of real functions and its implementation on vector-pipeline computers”, Kernel Software for Supercomputers, Issues of Cybernetics, Acad. of Sci. USSR, M., 1990, 91–101 (in Russian)