@article{CHEB_2016_17_4_a12,
author = {O. V. Chermnykh},
title = {On $drl$-semigroups and $drl$-semirings},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {167--179},
year = {2016},
volume = {17},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a12/}
}
O. V. Chermnykh. On $drl$-semigroups and $drl$-semirings. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 167-179. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a12/
[1] Birkhoff G., Lattice theory, Am. Math. Colloquium Publications, 25, 1948 | MR | Zbl
[2] L. Fuchs, Partially ordered algebraic systems, Mir, M., 1965, 342 pp.
[3] Golan J. S., The theory of semirings with applications in mathematics and theoretical computer science, Longman scienific and tehnical, Harlow, 1992 | MR | Zbl
[4] Rao P. R., “Lattice ordered semirings”, Math. Sem. Notes, Kobe Univ., 9 (1981), 119–149 | MR | Zbl
[5] Swamy K. L. N., “Dually residuated lattice ordered semigroups”, Math. Ann., 159 (1965), 105–114 | DOI | MR | Zbl
[6] Swamy K. L. N., “Dually residuated lattice ordered semigroups, II”, Math. Ann., 160 (1965), 64–71 | DOI | MR | Zbl
[7] Swamy K. L. N., “Dually residuated lattice ordered semigroups, III”, Math. Ann., 167 (1966), 71–74 | DOI | MR | Zbl
[8] Ward M., Dilworth R. P., “Residuated lattices”, Trans. Am. Math. Soc., 45 (1939), 335–354 | DOI | MR
[9] Vorozhcova T. A., Chermnyh O. V., “Arifmeticheskie svojstva $drl$-polugrupp”, Matematicheskij vestnik pedvuzov i universitetov Volgo-Vjatskogo regiona, 16, Izd-vo OOO “Raduga-PRESS”, Kirov, 2014, 74–81
[10] Miklin A. V., Chermnyh V. V., “O $drl$"-polukol'cah”, Matematicheskij vestnik pedvuzov i universitetov Volgo-Vjatskogo regiona, 16, Izd-vo OOO “Raduga-PRESS”, Kirov, 2014, 87–95
[11] Kovar T., “Two remarks on dually residuated lattice ordered semigroups”, Math. Slovaka, 49:1 (1999), 17–18 | MR | Zbl