Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_4_a11, author = {V. L. Usol'tsev}, title = {Rees algebras and {Rees} congruence algebras of one class of algebras with operator and basic near-unanimity operation}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {157--166}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a11/} }
TY - JOUR AU - V. L. Usol'tsev TI - Rees algebras and Rees congruence algebras of one class of algebras with operator and basic near-unanimity operation JO - Čebyševskij sbornik PY - 2016 SP - 157 EP - 166 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a11/ LA - ru ID - CHEB_2016_17_4_a11 ER -
%0 Journal Article %A V. L. Usol'tsev %T Rees algebras and Rees congruence algebras of one class of algebras with operator and basic near-unanimity operation %J Čebyševskij sbornik %D 2016 %P 157-166 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a11/ %G ru %F CHEB_2016_17_4_a11
V. L. Usol'tsev. Rees algebras and Rees congruence algebras of one class of algebras with operator and basic near-unanimity operation. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 157-166. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a11/
[1] Rees D., “On semigroups”, Proc. Cambridge Phil. Soc., 36 (1940), 387–400 | DOI | MR
[2] Tichy R. F., “The Rees congruences in universal algebras”, Publ. Inst. Math. (Beograd), 29 (1981), 229–239 | MR | Zbl
[3] Chajda I., “Rees ideal algebras”, Math. Bohem., 122:2 (1997), 125–130 | MR | Zbl
[4] Chajda I., Duda J., “Rees algebras and their varieties”, Publ. Math. (Debrecen), 32 (1985), 17–22 | MR | Zbl
[5] Šešelja B., Tepavčević A., “On a characterization of Rees varieties”, Tatra Mountains Math. Publ., 5 (1995), 61–69 | MR
[6] Chajda I., Eigenthaler G., Langer H., Congruence classes in universal algebra, Heldermann-Verl., Vienna, 2003, 192 pp. | MR | Zbl
[7] Lavers T., Solomon A., “The endomorphisms of a finite chain form a Rees congruence semigroup”, Semigroup Forum, 59:2 (1999), 167–170 | DOI | MR | Zbl
[8] Baker K. A., Pixley A., “Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems”, Math. Zeitschrift, 143 (1975), 165–174 | DOI | MR | Zbl
[9] Marković P., McKenzie R., “Few subpowers, congruence distributivity and near-unanimity terms”, Algebra Universalis, 58 (2008), 119–128 | DOI | MR | Zbl
[10] Jeavons P., Cohen D., Cooper M., “Constraints, consistency and closure”, Artificial Intelligence, 101 (1998), 251–265 | DOI | MR | Zbl
[11] Usol'tsev V. L., “On strictly simple ternary algebras with operators”, Chebyshevskiy sbornik, 14:4(48) (2013), 196–204 (Russian)
[12] Kartashov V. K., “On unars with Mal'tsev operation”, Universal algebra and application, Theses of International workshop dedicated memory of prof. L. A. Skornyakov, Volgograd, 1999, 31–32 (Russian)
[13] Usol'tsev V. L., “On Hamiltonian ternary algebras with operators”, Chebyshevskiy sbornik, 15:3(51) (2014), 100–113 (Russian)
[14] Usol'tsev V. L., “On congruence lattices of algebras with one operator and basic near-unanimity operation”, Nauchno-tekhn. vestnik Povolzhya, 2016, no. 2, 28–30 (Russian)
[15] Usol'tsev V. L., “Simple and pseudosimple algebras with operators”, Journal of Mathematical Sciences, 164:2 (2010), 281–293 | DOI | MR | Zbl | Zbl
[16] Usol'tsev V. L., “On hamiltonian closure on class of algebras with one operator”, Chebyshevskiy sbornik, 16:4(56) (2015), 284–302 (Russian)