@article{CHEB_2016_17_4_a10,
author = {K.Tukhliev},
title = {Mean-square approximation of functions by {Fourier{\textendash}Bessel} series and the values of widths for some functional classes},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {141--156},
year = {2016},
volume = {17},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a10/}
}
TY - JOUR AU - K.Tukhliev TI - Mean-square approximation of functions by Fourier–Bessel series and the values of widths for some functional classes JO - Čebyševskij sbornik PY - 2016 SP - 141 EP - 156 VL - 17 IS - 4 UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a10/ LA - ru ID - CHEB_2016_17_4_a10 ER -
K.Tukhliev. Mean-square approximation of functions by Fourier–Bessel series and the values of widths for some functional classes. Čebyševskij sbornik, Tome 17 (2016) no. 4, pp. 141-156. http://geodesic.mathdoc.fr/item/CHEB_2016_17_4_a10/
[1] Vladimirov V. S., Equations of Mathematical Physics, Science, M., 1981, 512 pp. | MR
[2] Abilov V. A., Abilova V. F., Kerimov M. K., “Sharp estimates for the convergence rate of Fourier–Bessel series”, Computational Mathematics and Mathematical Physics, 55:6 (2015), 907–916 | DOI | DOI | MR | Zbl
[3] Chertova D. V., “Jackson theorem in the space $L_{2}$ on the line with power weight”, Material of 8th Intern. Kazan. Summer Science School-Conf., Proc. Math. Cent. N. I. Lobachevskii, 35, Math Soc. Press, Kazan, 2007, 267–268
[4] Ivanov V. I., Chertova D. V., Liu Yongping, “The sharp Jackson inequality in the space $L_{2}$ on the segment $[-1,1]$ with the power weight”, Proceedings of the Steklov Institute of Mathematics, 14:1 (2008), 133–149
[5] Shabozov M. Sh., Yusupov G. A., “Best polynomial approximations in $L_{2}$ of classes of $2\pi$-periodic functions and exact values of their widths”, Mathematical Notes, 90:5 (2011), 748–757 | DOI | DOI | MR | Zbl
[6] Shabozov M. Sh., Tukhliev K., “Jackson–Stechkin inequality with generalized module of continuity and widths of some classes fucntions”, Proceedings of the Steklov Institute of Mathematics, 21:4 (2015), 292–308 | MR
[7] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985, 252 pp. | MR | Zbl
[8] Fedorov V. M., “Approximation by algebraic polynomials with Chebyshev–Hermitian weight”, Izvestiya VUZ. Mathematica, 28:6 (1984), 70–79 | Zbl | Zbl
[9] Alexeev D. V., “Approximation by polynomial with Chebyshev–Hermitian weight on the real axis”, Vestnik MGU. Mathematica. Mekhanica, 1997, no. 6, 68–71 | Zbl
[10] Shabozov M. Sh., Tukhliev K., “$\cal K$ functionals and the exact values of $n$-widths of some class of functions from $L_{2}\left((\sqrt{1-x^2})^{-1};[-1,1]\right)$”, Izv. TSU. Natural Science, 2014, no. 1-1, 83–97
[11] Tikhomirov V. M., Some problems of theory of approximation, MSU, M., 1976, 304 pp. | MR
[12] Shabozov M. Sh., Vakarchuk S. B., “On best approximation of periodic functions by trigonometric polynomials and the exact values of widths of functional classes in $L_{2}$”, Analysis Mathematica, 38:2 (2008), 147–159
[13] Shevchuk A. I., Approximation by polynomials and tracks of continuous functions on the segment, Naukova Dumka, Kiev, 1992, 255 pp.