Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_3_a9, author = {A. Laurin\v{c}ikas and L. Me\v{s}ka}, title = {Modification of the {Mishou} theorem}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {135--147}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a9/} }
A. Laurinčikas; L. Meška. Modification of the Mishou theorem. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 135-147. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a9/
[1] Billingsley P., Convergence of Probability Measures, Willey, New York, 1968 | MR | Zbl
[2] Javtokas A., Laurinčikas A., “Universality of the periodic Hurwitz zeta-function”, Integr. Transf. Spec. Funct., 17 (2006), 711–722 | DOI | MR | Zbl
[3] Kačinskaitė R., Laurinčikas A., “The joint distribution of periodic zeta-functions”, Studia Sci. Math. Hung., 18 (2011), 257–279 | MR
[4] Laurinčikas A., “Voronin-type theorem for periodic Hurwitz zeta-functions”, Sb. Math., 198:1–2 (2007), 231–242 | MR | Zbl
[5] Laurinčikas A., “Joint universality for periodic Hurwitz zeta-functions”, Izv. Math., 72:1–2 (2008), 741–760 | MR | Zbl
[6] Laurinčikas A., “The joint universality of Hurwitz zeta-functions”, Šiauliai Math. Semin., 3:11 (2008), 169–187 | MR | Zbl
[7] Laurinčikas A., “Joint universality of zeta-functions with periodic coefficients”, Izv. Math., 74 (2010), 515–539 | DOI | MR | Zbl
[8] Laurinčikas A., “Universality of composite functions”, Functions in Number Theory and Their Probabilistic Aspects, RIMS Kôkyûroku Bessatsu, B34, eds. K. Matsumoto et al., 2012, 191–204 | MR | Zbl
[9] Laurinčikas A., “On joint universality of the Riemann zeta-function and Hurwitz zeta-functions”, J. Number Theory, 132 (2012), 2842–2853 | DOI | MR | Zbl
[10] Laurinčikas A., “Universality theorems for zeta-functions with periodic coefficients”, Sib. Math. J., 57:2 (2016), 330–339 | DOI | MR | Zbl
[11] Laurinčikas A., Garunkštis R., The Lerch Zeta-Function, Kluwer, Dordrecht, 2002 | Zbl
[12] Laurinčikas A., Matsumoto K., “The universality of zeta-functions attached to certain cusp forms”, Acta Arith., 98 (2001), 345–359 | DOI | MR | Zbl
[13] Laurinčikas A., Meška L., “Improvement of the universality inequality”, Math. Notes, 96:5–6 (2014), 971–976 | MR | Zbl
[14] Laurinčikas A., Meška L., “On the modification of the universality of the Hurwitz zeta-function”, Nonlinear Analysis: Modelling and Control, 21:4 (2016), 564–576 | MR
[15] Laurinčikas A., Šiaučiūnas D., “Remarks on the universality of the periodic zeta-function”, Math. Notes, 80:3–4 (2006), 532–538 | MR | Zbl
[16] Matsumoto K., “A survey on the theory of universality for zeta and $L$-functions”, Number Theory: Plowing and Starring Through High Wave Forms, Proc. of the 7th China-Japan Seminar (Fukuoka, Japan, 2013), Series on Number Theory and Its Applications, 11, eds. M. Kaneko et al., 2015, 95–144 | MR | Zbl
[17] Mergelyan S. N., “Uniform approximation to functions of a complex variable”, Uspekhi Mat. Nauk, 7 (1952), 31–122 (In Russian) | MR | Zbl
[18] Meška L., “A modification of the universality inequality”, Šiauliai Math. Semin., 9:17 (2014), 71–81 | MR | Zbl
[19] Mishou H., “The joint value distribution of the Riemann zeta-function and Hurwitz zeta-functions”, Lith. Math. J., 47 (2007), 32–47 | DOI | MR | Zbl
[20] Steuding J., Value-Distribution of $L$-functions, Lecture Notes in Math., 1877, Springer, Berlin, 2007 | MR | Zbl
[21] Voronin S. M., “A theorem on the “universality” of the Riemann zeta-function”, Math. USSR Izv., 9 (1975), 443–453 | DOI | MR