Modification of the Mishou theorem
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 135-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Mishou theorem asserts that a pair of analytic functions from a wide class can be approximated by shifts of the Riemann zeta and Hurwitz zeta-functions $(\zeta(s+i\tau), \zeta(s+i\tau, \alpha))$ with transcendental $\alpha$, $\tau\in\mathbb{R}$, and that the set of such $\tau$ has a positive lower density. In the paper, we prove that the above set has a positive density for all but at most countably many $\varepsilon>0$, where $\varepsilon$ is the accuracy of approximation. We also obtain similar results for composite functions $F(\zeta(s),\zeta(s,\alpha))$ for some classes of operator $F$. Bibliography: 21 titles.
Keywords: Hurwitz zeta-function, Riemann zeta-function, space of analytic functions, universality.
@article{CHEB_2016_17_3_a9,
     author = {A. Laurin\v{c}ikas and L. Me\v{s}ka},
     title = {Modification of the {Mishou} theorem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {135--147},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a9/}
}
TY  - JOUR
AU  - A. Laurinčikas
AU  - L. Meška
TI  - Modification of the Mishou theorem
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 135
EP  - 147
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a9/
LA  - en
ID  - CHEB_2016_17_3_a9
ER  - 
%0 Journal Article
%A A. Laurinčikas
%A L. Meška
%T Modification of the Mishou theorem
%J Čebyševskij sbornik
%D 2016
%P 135-147
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a9/
%G en
%F CHEB_2016_17_3_a9
A. Laurinčikas; L. Meška. Modification of the Mishou theorem. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 135-147. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a9/

[1] Billingsley P., Convergence of Probability Measures, Willey, New York, 1968 | MR | Zbl

[2] Javtokas A., Laurinčikas A., “Universality of the periodic Hurwitz zeta-function”, Integr. Transf. Spec. Funct., 17 (2006), 711–722 | DOI | MR | Zbl

[3] Kačinskaitė R., Laurinčikas A., “The joint distribution of periodic zeta-functions”, Studia Sci. Math. Hung., 18 (2011), 257–279 | MR

[4] Laurinčikas A., “Voronin-type theorem for periodic Hurwitz zeta-functions”, Sb. Math., 198:1–2 (2007), 231–242 | MR | Zbl

[5] Laurinčikas A., “Joint universality for periodic Hurwitz zeta-functions”, Izv. Math., 72:1–2 (2008), 741–760 | MR | Zbl

[6] Laurinčikas A., “The joint universality of Hurwitz zeta-functions”, Šiauliai Math. Semin., 3:11 (2008), 169–187 | MR | Zbl

[7] Laurinčikas A., “Joint universality of zeta-functions with periodic coefficients”, Izv. Math., 74 (2010), 515–539 | DOI | MR | Zbl

[8] Laurinčikas A., “Universality of composite functions”, Functions in Number Theory and Their Probabilistic Aspects, RIMS Kôkyûroku Bessatsu, B34, eds. K. Matsumoto et al., 2012, 191–204 | MR | Zbl

[9] Laurinčikas A., “On joint universality of the Riemann zeta-function and Hurwitz zeta-functions”, J. Number Theory, 132 (2012), 2842–2853 | DOI | MR | Zbl

[10] Laurinčikas A., “Universality theorems for zeta-functions with periodic coefficients”, Sib. Math. J., 57:2 (2016), 330–339 | DOI | MR | Zbl

[11] Laurinčikas A., Garunkštis R., The Lerch Zeta-Function, Kluwer, Dordrecht, 2002 | Zbl

[12] Laurinčikas A., Matsumoto K., “The universality of zeta-functions attached to certain cusp forms”, Acta Arith., 98 (2001), 345–359 | DOI | MR | Zbl

[13] Laurinčikas A., Meška L., “Improvement of the universality inequality”, Math. Notes, 96:5–6 (2014), 971–976 | MR | Zbl

[14] Laurinčikas A., Meška L., “On the modification of the universality of the Hurwitz zeta-function”, Nonlinear Analysis: Modelling and Control, 21:4 (2016), 564–576 | MR

[15] Laurinčikas A., Šiaučiūnas D., “Remarks on the universality of the periodic zeta-function”, Math. Notes, 80:3–4 (2006), 532–538 | MR | Zbl

[16] Matsumoto K., “A survey on the theory of universality for zeta and $L$-functions”, Number Theory: Plowing and Starring Through High Wave Forms, Proc. of the 7th China-Japan Seminar (Fukuoka, Japan, 2013), Series on Number Theory and Its Applications, 11, eds. M. Kaneko et al., 2015, 95–144 | MR | Zbl

[17] Mergelyan S. N., “Uniform approximation to functions of a complex variable”, Uspekhi Mat. Nauk, 7 (1952), 31–122 (In Russian) | MR | Zbl

[18] Meška L., “A modification of the universality inequality”, Šiauliai Math. Semin., 9:17 (2014), 71–81 | MR | Zbl

[19] Mishou H., “The joint value distribution of the Riemann zeta-function and Hurwitz zeta-functions”, Lith. Math. J., 47 (2007), 32–47 | DOI | MR | Zbl

[20] Steuding J., Value-Distribution of $L$-functions, Lecture Notes in Math., 1877, Springer, Berlin, 2007 | MR | Zbl

[21] Voronin S. M., “A theorem on the “universality” of the Riemann zeta-function”, Math. USSR Izv., 9 (1975), 443–453 | DOI | MR