Modification of the Mishou theorem
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 135-147

Voir la notice de l'article provenant de la source Math-Net.Ru

The Mishou theorem asserts that a pair of analytic functions from a wide class can be approximated by shifts of the Riemann zeta and Hurwitz zeta-functions $(\zeta(s+i\tau), \zeta(s+i\tau, \alpha))$ with transcendental $\alpha$, $\tau\in\mathbb{R}$, and that the set of such $\tau$ has a positive lower density. In the paper, we prove that the above set has a positive density for all but at most countably many $\varepsilon>0$, where $\varepsilon$ is the accuracy of approximation. We also obtain similar results for composite functions $F(\zeta(s),\zeta(s,\alpha))$ for some classes of operator $F$. Bibliography: 21 titles.
Keywords: Hurwitz zeta-function, Riemann zeta-function, space of analytic functions, universality.
@article{CHEB_2016_17_3_a9,
     author = {A. Laurin\v{c}ikas and L. Me\v{s}ka},
     title = {Modification of the {Mishou} theorem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {135--147},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a9/}
}
TY  - JOUR
AU  - A. Laurinčikas
AU  - L. Meška
TI  - Modification of the Mishou theorem
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 135
EP  - 147
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a9/
LA  - en
ID  - CHEB_2016_17_3_a9
ER  - 
%0 Journal Article
%A A. Laurinčikas
%A L. Meška
%T Modification of the Mishou theorem
%J Čebyševskij sbornik
%D 2016
%P 135-147
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a9/
%G en
%F CHEB_2016_17_3_a9
A. Laurinčikas; L. Meška. Modification of the Mishou theorem. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 135-147. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a9/