Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_3_a8, author = {V. N. Kuznetsov and O. A. Matveeva}, title = {On a boundary behavior of a {Dirichlet} series class with multiplicative coefficients}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {125--134}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a8/} }
TY - JOUR AU - V. N. Kuznetsov AU - O. A. Matveeva TI - On a boundary behavior of a Dirichlet series class with multiplicative coefficients JO - Čebyševskij sbornik PY - 2016 SP - 125 EP - 134 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a8/ LA - ru ID - CHEB_2016_17_3_a8 ER -
V. N. Kuznetsov; O. A. Matveeva. On a boundary behavior of a Dirichlet series class with multiplicative coefficients. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 125-134. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a8/
[1] Chudakov N. G., Linnik U. V., “On a class of completely multiplicative functions”, DAN SSSR, 74:2 (1950), 133–136
[2] Chudakov N. G., Rodosskij K. A., “On a generalized character”, DAN SSSR, 74:4 (1950), 1137–1138
[3] Kuznetsov V. N., “Analogue of the Szego theorem for a class of Dirichlet series”, Math. issues, 36:6 (1984), 805–812 | MR
[4] Kuznetsov V. N., “On the analytic extension of a class of Dirichlet series”, Vychislitel'nye metody i programmirovanie, Mezhvuz. sb. nauch. tr., v. 1, Publ. SSU, Saratov, 1987, 13–23
[5] Kuznetsov V. N., “On the boundary properties of power series with finite-valued coefficients”, Mezhvuz. sb. nauch. tr., Differencial'nye uravnenija i teorija funkcij, 7, Publ. SSU, Saratov, 1987, 8–16 | Zbl
[6] Kuznetsov V. N., “On the problem of description of a certain class of Dirichlet series, defining integral functions”, Vychislitel'nye metody i programmirovanie, Mezhvuz. sb. nauch. tr., v. 1, Publ. SSU, Saratov, 1988, 63–72 | MR
[7] Matveeva O. A., “On a problem of defining of the power series with integer coefficients that can not be continued beyond the boundary of convergence”, Uchenye zapiski Orlovskogo gos. un-ta. Serija: «Estestvennye, tehnicheskie i medicinskie nauki», 2012, no. 6, ch. 2, 153–156 | MR
[8] Matveeva O. A., “Approximation polynomials and the behavior of the Dirichlet L-functions on the critical band”, Izvestiia Saratovskogo un-ta. Seriia «Matematika. Informatika. Mekhanika», 13:4(2) (2013), 80–84
[9] Matveev V. A., Matveeva O. A., “On a certain equivalent of the extended Riemann hypothesis for L-functions of Dirichlet series”, Izvestiia Saratovskogo un-ta. Seriia «Matematika. Informatika. Mekhanika», 13:4(2) (2013), 76–80
[10] Matveeva O. A., “On the zeros of Dirichlet polynomials that approximate Dirichlet L-functions in the critical band”, Chebyshevskij sbornik, 14:2 (2013), 117–121
[11] Matveeva O. A., Analytical properties of some classes of Dirichlet series and some problems of the theory of Dirichlet $L$-functions, Dissertation, Ul'ianovsk, 2014
[12] Terehin A. P., “Restricted group of operators and best approximation”, Mezhvuz. sb. nauch. tr., Dif. uravnenija i vychislitel'naja matematika, 2, Publ. SSU, Saratov, 1975, 3–28 | Zbl
[13] Kuznetsova T. A., Finding semigroup, whole, of exponential type on a subspace, Dissertation, Saratov, 1982
[14] Kuznetsov V. N., Vodolazov A. M., “On the problem of analytical extension of the Dirichlet series with completely multiplicative coefficients”, Mezhvuz. sb. nauch. tr., Issledovanija po algebre, teorii chisel, funkcional'nomu analizu i smezhnym voprosam, 1, Publ. SSU, Saratov, 2003, 43–59
[15] Daugavet I. K., Introduction to functions approximation theory, Izd-vo Leningradskogo universiteta, L., 1972 | MR
[16] Kuznetsov V. N., Matveeva O. A., “On a boundary behavior of a certain Dirichlet series class”, Chebyshevskij sbornik, 17:2 (2016), 162–168