On number of zeros of the Riemann zeta function that lie in > very short intervals of neighborhood of the critical line
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 106-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Proof (or disproof) of the Riemann hypothesis is the central problem of analytic number theory. By now it has not been solved. In 1985 Karatsuba proved that for any $ 0 \varepsilon 0,001 $, $ 0,5 \sigma \leq 1 $, $ T> T_0 (\varepsilon)> 0 $ and $ H = T ^ { 27/82 + \varepsilon} $ in the rectangle with vertices $ \sigma + iT $, $ \sigma + i (T + H) $, $ 1 + i (T + H) $, $ 1 + iT $ contains no more than $ cH / (\sigma-0,5) $ zeros of $ \zeta (s) $. Thereby A.A. Karatsuba significantly strengthened the classical theorem J. Littlewood's. Decrease in magnitude of $H$ for individual rectangle has not been obtained. However, by solving this problem «on average», in 1989 L.V. Kiseleva proved that for «almost all» $ T $ in the interval $ [X, X + X ^ {11/12 + \varepsilon}] $, $ X> X_0 (\varepsilon) $ in rectangle with vertices $ \sigma + iT $, $ \sigma + i (T + X ^ \varepsilon) $, $ 1 + i (T + X ^ \varepsilon) $, $ 1 + iT $ contains no more than $ O (X ^ \varepsilon / (\sigma-0,5)) $ zeros of $ \zeta (s) $. In this article, we obtain a result of this kind, but for «almost all » $ T $ in the interval $ [X, X + X ^ {7/8 + \varepsilon}] $. Bibliography: 23 titles.
Keywords: zeta function, non-trivial zeros, critical line.
@article{CHEB_2016_17_3_a7,
     author = {Do Duc Tam},
     title = {On number of zeros of the {Riemann} zeta function that lie in <<almost all>> very short intervals of neighborhood of the critical line},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {106--124},
     year = {2016},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a7/}
}
TY  - JOUR
AU  - Do Duc Tam
TI  - On number of zeros of the Riemann zeta function that lie in <> very short intervals of neighborhood of the critical line
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 106
EP  - 124
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a7/
LA  - ru
ID  - CHEB_2016_17_3_a7
ER  - 
%0 Journal Article
%A Do Duc Tam
%T On number of zeros of the Riemann zeta function that lie in <> very short intervals of neighborhood of the critical line
%J Čebyševskij sbornik
%D 2016
%P 106-124
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a7/
%G ru
%F CHEB_2016_17_3_a7
Do Duc Tam. On number of zeros of the Riemann zeta function that lie in <> very short intervals of neighborhood of the critical line. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 106-124. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a7/

[1] Riemann B., The works, OGIZ, M.–L., 1948, 479 pp. (Russian)

[2] Hardy G. N., “Sur les zeros de la fonction $\zeta(s)$ de Riemann”, Compt. Rend. Acad. Sci., 158 (1914), 1012–1014 | Zbl

[3] Hardy G. H., Littlewood J. E., “The zeros of Riemann's zeta-function on the critical line”, Mathematische Zeitschrift, 10 (1921), 283–317 | DOI | MR | Zbl

[4] Littlewood J. E., “On the zeros of the Riemann zeta-function”, Mathematical Proceedings of the Cambridge Philosophical Society, 22 (1924), 295–318 | DOI | Zbl

[5] Selberg A., “On the zeros of Riemann's zeta-function”, Skr. Norske Vid. Akad. Oslo, 10 (1942), 1–59 | MR

[6] Levinson N., “More than one third of the zeros of Riemann's zeta-function are on $\sigma= 1/2$”, Adv. in Math., 13 (1974), 383–436 | DOI | MR | Zbl

[7] Karatsuba A. A., “On the distance between consecutive zeros of the Riemann zeta function that lie on the critical line”, Trudy Mat. Inst. Steklov, 157, 1981, 49–63 (Russian) | MR | Zbl

[8] Karatsuba A. A., “On the zeros of the function $ \zeta(s)$ on short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 48:3 (1984), 569–584 (Russian) | MR | Zbl

[9] Karatsuba A. A., “The distribution of zeros of the function $\zeta(1/2+it)$”, Izv. Akad. Nauk SSSR. Ser. Math., 48:6 (1984), 1214–1224 (Russian) | MR | Zbl

[10] Karatsuba A. A., “Zeros of the Riemann zeta function on the critical line”, Trudy Mat. Inst. Steklov, 167, 1985, 167–178 (Russian) | MR | Zbl

[11] Karatsuba A. A., “On the real zeros of the function $\zeta(1/2+it)$”, Uspekhi Mat. Nauk, 40:4 (1985), 171–172 (Russian) | MR | Zbl

[12] Karatsuba A. A., “The Riemann zeta function and its zeros”, Uspekhi Mat. Nauk, 40:5 (1985), 23–82 (Russian) | MR | Zbl

[13] Karatsuba A. A., “On the zeros of the function $\zeta(s)$ in the neighborhood of the critical lin”, Math. USSR-Izv., 26:2 (1986), 307–313 | DOI | MR | MR | Zbl

[14] Karatsuba A. A., “On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 56:2 (1992), 372–397 (Russian)

[15] Karatsuba A. A., “A refinement of theorems on the number of zeros lying on intervals of the critical line of certain Dirichlet series”, Uspekhi Mat. Nauk, 47:2 (1992), 193–194 (Russian) | MR | Zbl

[16] Karatsuba A. A., “On the zeros of a special type of function connected with Dirichlet series”, Math. USSR-Izv., 38:3 (1992), 471–502 | DOI | MR

[17] Kiseleva L. V., “The number of zeros of the function $\zeta(s)$ on “almost all” short intervals of the critical line”, Math. USSR-Izv., 32:3 (1989), 475–499 | DOI | MR

[18] Kiseleva L. V., “On the zeros of the function $\zeta(s)$ in the neighborhood of the critical line”, Mat. Zametki, 46:4 (1989), 114–115 (Russian) | MR | Zbl

[19] Tam D. D., “On the zeros of the Rieman zeta function, lying in almost all short intervals of the critical line”, Chebyishovski Sbornhik, 17:1 (2016), 71–89 | MR

[20] Voronin S. V., Karatsuba A. A., The Riemann zeta-function, Fizmatlit, M., 1994, 376 pp. (Russian) | MR

[21] Titchmarsh E. K., Teoriya dzeta-funkcii Rimana, Mir, M., 1953, 409 pp. (Russian)

[22] Malysev A. V., “On the representation of integers by positive quadratic forms”, Trudy Mat. Inst. Steklov, 65, 1962, 3–212 (Russian) | MR

[23] Karatsuba A. A., Fundamentals of analytic number theory, Nauka, M., 1983, 240 pp. (Russian) | MR