Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_3_a7, author = {Do Duc Tam}, title = {On number of zeros of the {Riemann} zeta function that lie in <<almost all>> very short intervals of neighborhood of the critical line}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {106--124}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a7/} }
TY - JOUR AU - Do Duc Tam TI - On number of zeros of the Riemann zeta function that lie in <> very short intervals of neighborhood of the critical line JO - Čebyševskij sbornik PY - 2016 SP - 106 EP - 124 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a7/ LA - ru ID - CHEB_2016_17_3_a7 ER -
%0 Journal Article %A Do Duc Tam %T On number of zeros of the Riemann zeta function that lie in <> very short intervals of neighborhood of the critical line %J Čebyševskij sbornik %D 2016 %P 106-124 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a7/ %G ru %F CHEB_2016_17_3_a7
Do Duc Tam. On number of zeros of the Riemann zeta function that lie in <> very short intervals of neighborhood of the critical line. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 106-124. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a7/
[1] Riemann B., The works, OGIZ, M.–L., 1948, 479 pp. (Russian)
[2] Hardy G. N., “Sur les zeros de la fonction $\zeta(s)$ de Riemann”, Compt. Rend. Acad. Sci., 158 (1914), 1012–1014 | Zbl
[3] Hardy G. H., Littlewood J. E., “The zeros of Riemann's zeta-function on the critical line”, Mathematische Zeitschrift, 10 (1921), 283–317 | DOI | MR | Zbl
[4] Littlewood J. E., “On the zeros of the Riemann zeta-function”, Mathematical Proceedings of the Cambridge Philosophical Society, 22 (1924), 295–318 | DOI | Zbl
[5] Selberg A., “On the zeros of Riemann's zeta-function”, Skr. Norske Vid. Akad. Oslo, 10 (1942), 1–59 | MR
[6] Levinson N., “More than one third of the zeros of Riemann's zeta-function are on $\sigma= 1/2$”, Adv. in Math., 13 (1974), 383–436 | DOI | MR | Zbl
[7] Karatsuba A. A., “On the distance between consecutive zeros of the Riemann zeta function that lie on the critical line”, Trudy Mat. Inst. Steklov, 157, 1981, 49–63 (Russian) | MR | Zbl
[8] Karatsuba A. A., “On the zeros of the function $ \zeta(s)$ on short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 48:3 (1984), 569–584 (Russian) | MR | Zbl
[9] Karatsuba A. A., “The distribution of zeros of the function $\zeta(1/2+it)$”, Izv. Akad. Nauk SSSR. Ser. Math., 48:6 (1984), 1214–1224 (Russian) | MR | Zbl
[10] Karatsuba A. A., “Zeros of the Riemann zeta function on the critical line”, Trudy Mat. Inst. Steklov, 167, 1985, 167–178 (Russian) | MR | Zbl
[11] Karatsuba A. A., “On the real zeros of the function $\zeta(1/2+it)$”, Uspekhi Mat. Nauk, 40:4 (1985), 171–172 (Russian) | MR | Zbl
[12] Karatsuba A. A., “The Riemann zeta function and its zeros”, Uspekhi Mat. Nauk, 40:5 (1985), 23–82 (Russian) | MR | Zbl
[13] Karatsuba A. A., “On the zeros of the function $\zeta(s)$ in the neighborhood of the critical lin”, Math. USSR-Izv., 26:2 (1986), 307–313 | DOI | MR | MR | Zbl
[14] Karatsuba A. A., “On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 56:2 (1992), 372–397 (Russian)
[15] Karatsuba A. A., “A refinement of theorems on the number of zeros lying on intervals of the critical line of certain Dirichlet series”, Uspekhi Mat. Nauk, 47:2 (1992), 193–194 (Russian) | MR | Zbl
[16] Karatsuba A. A., “On the zeros of a special type of function connected with Dirichlet series”, Math. USSR-Izv., 38:3 (1992), 471–502 | DOI | MR
[17] Kiseleva L. V., “The number of zeros of the function $\zeta(s)$ on “almost all” short intervals of the critical line”, Math. USSR-Izv., 32:3 (1989), 475–499 | DOI | MR
[18] Kiseleva L. V., “On the zeros of the function $\zeta(s)$ in the neighborhood of the critical line”, Mat. Zametki, 46:4 (1989), 114–115 (Russian) | MR | Zbl
[19] Tam D. D., “On the zeros of the Rieman zeta function, lying in almost all short intervals of the critical line”, Chebyishovski Sbornhik, 17:1 (2016), 71–89 | MR
[20] Voronin S. V., Karatsuba A. A., The Riemann zeta-function, Fizmatlit, M., 1994, 376 pp. (Russian) | MR
[21] Titchmarsh E. K., Teoriya dzeta-funkcii Rimana, Mir, M., 1953, 409 pp. (Russian)
[22] Malysev A. V., “On the representation of integers by positive quadratic forms”, Trudy Mat. Inst. Steklov, 65, 1962, 3–212 (Russian) | MR
[23] Karatsuba A. A., Fundamentals of analytic number theory, Nauka, M., 1983, 240 pp. (Russian) | MR