On number of zeros of the Riemann zeta function that lie in > very short intervals of neighborhood of the critical line
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 106-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

Proof (or disproof) of the Riemann hypothesis is the central problem of analytic number theory. By now it has not been solved. In 1985 Karatsuba proved that for any $ 0 \varepsilon 0,001 $, $ 0,5 \sigma \leq 1 $, $ T> T_0 (\varepsilon)> 0 $ and $ H = T ^ { 27/82 + \varepsilon} $ in the rectangle with vertices $ \sigma + iT $, $ \sigma + i (T + H) $, $ 1 + i (T + H) $, $ 1 + iT $ contains no more than $ cH / (\sigma-0,5) $ zeros of $ \zeta (s) $. Thereby A.A. Karatsuba significantly strengthened the classical theorem J. Littlewood's. Decrease in magnitude of $H$ for individual rectangle has not been obtained. However, by solving this problem «on average», in 1989 L.V. Kiseleva proved that for «almost all» $ T $ in the interval $ [X, X + X ^ {11/12 + \varepsilon}] $, $ X> X_0 (\varepsilon) $ in rectangle with vertices $ \sigma + iT $, $ \sigma + i (T + X ^ \varepsilon) $, $ 1 + i (T + X ^ \varepsilon) $, $ 1 + iT $ contains no more than $ O (X ^ \varepsilon / (\sigma-0,5)) $ zeros of $ \zeta (s) $. In this article, we obtain a result of this kind, but for «almost all » $ T $ in the interval $ [X, X + X ^ {7/8 + \varepsilon}] $. Bibliography: 23 titles.
Keywords: zeta function, non-trivial zeros, critical line.
@article{CHEB_2016_17_3_a7,
     author = {Do Duc Tam},
     title = {On number of zeros of the {Riemann} zeta function that lie in <<almost all>> very short intervals of neighborhood of the critical line},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {106--124},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a7/}
}
TY  - JOUR
AU  - Do Duc Tam
TI  - On number of zeros of the Riemann zeta function that lie in <> very short intervals of neighborhood of the critical line
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 106
EP  - 124
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a7/
LA  - ru
ID  - CHEB_2016_17_3_a7
ER  - 
%0 Journal Article
%A Do Duc Tam
%T On number of zeros of the Riemann zeta function that lie in <> very short intervals of neighborhood of the critical line
%J Čebyševskij sbornik
%D 2016
%P 106-124
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a7/
%G ru
%F CHEB_2016_17_3_a7
Do Duc Tam. On number of zeros of the Riemann zeta function that lie in <> very short intervals of neighborhood of the critical line. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 106-124. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a7/

[1] Riemann B., The works, OGIZ, M.–L., 1948, 479 pp. (Russian)

[2] Hardy G. N., “Sur les zeros de la fonction $\zeta(s)$ de Riemann”, Compt. Rend. Acad. Sci., 158 (1914), 1012–1014 | Zbl

[3] Hardy G. H., Littlewood J. E., “The zeros of Riemann's zeta-function on the critical line”, Mathematische Zeitschrift, 10 (1921), 283–317 | DOI | MR | Zbl

[4] Littlewood J. E., “On the zeros of the Riemann zeta-function”, Mathematical Proceedings of the Cambridge Philosophical Society, 22 (1924), 295–318 | DOI | Zbl

[5] Selberg A., “On the zeros of Riemann's zeta-function”, Skr. Norske Vid. Akad. Oslo, 10 (1942), 1–59 | MR

[6] Levinson N., “More than one third of the zeros of Riemann's zeta-function are on $\sigma= 1/2$”, Adv. in Math., 13 (1974), 383–436 | DOI | MR | Zbl

[7] Karatsuba A. A., “On the distance between consecutive zeros of the Riemann zeta function that lie on the critical line”, Trudy Mat. Inst. Steklov, 157, 1981, 49–63 (Russian) | MR | Zbl

[8] Karatsuba A. A., “On the zeros of the function $ \zeta(s)$ on short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 48:3 (1984), 569–584 (Russian) | MR | Zbl

[9] Karatsuba A. A., “The distribution of zeros of the function $\zeta(1/2+it)$”, Izv. Akad. Nauk SSSR. Ser. Math., 48:6 (1984), 1214–1224 (Russian) | MR | Zbl

[10] Karatsuba A. A., “Zeros of the Riemann zeta function on the critical line”, Trudy Mat. Inst. Steklov, 167, 1985, 167–178 (Russian) | MR | Zbl

[11] Karatsuba A. A., “On the real zeros of the function $\zeta(1/2+it)$”, Uspekhi Mat. Nauk, 40:4 (1985), 171–172 (Russian) | MR | Zbl

[12] Karatsuba A. A., “The Riemann zeta function and its zeros”, Uspekhi Mat. Nauk, 40:5 (1985), 23–82 (Russian) | MR | Zbl

[13] Karatsuba A. A., “On the zeros of the function $\zeta(s)$ in the neighborhood of the critical lin”, Math. USSR-Izv., 26:2 (1986), 307–313 | DOI | MR | MR | Zbl

[14] Karatsuba A. A., “On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 56:2 (1992), 372–397 (Russian)

[15] Karatsuba A. A., “A refinement of theorems on the number of zeros lying on intervals of the critical line of certain Dirichlet series”, Uspekhi Mat. Nauk, 47:2 (1992), 193–194 (Russian) | MR | Zbl

[16] Karatsuba A. A., “On the zeros of a special type of function connected with Dirichlet series”, Math. USSR-Izv., 38:3 (1992), 471–502 | DOI | MR

[17] Kiseleva L. V., “The number of zeros of the function $\zeta(s)$ on “almost all” short intervals of the critical line”, Math. USSR-Izv., 32:3 (1989), 475–499 | DOI | MR

[18] Kiseleva L. V., “On the zeros of the function $\zeta(s)$ in the neighborhood of the critical line”, Mat. Zametki, 46:4 (1989), 114–115 (Russian) | MR | Zbl

[19] Tam D. D., “On the zeros of the Rieman zeta function, lying in almost all short intervals of the critical line”, Chebyishovski Sbornhik, 17:1 (2016), 71–89 | MR

[20] Voronin S. V., Karatsuba A. A., The Riemann zeta-function, Fizmatlit, M., 1994, 376 pp. (Russian) | MR

[21] Titchmarsh E. K., Teoriya dzeta-funkcii Rimana, Mir, M., 1953, 409 pp. (Russian)

[22] Malysev A. V., “On the representation of integers by positive quadratic forms”, Trudy Mat. Inst. Steklov, 65, 1962, 3–212 (Russian) | MR

[23] Karatsuba A. A., Fundamentals of analytic number theory, Nauka, M., 1983, 240 pp. (Russian) | MR