Generalized Wagner's curvature tensor of almost contact metric spaces
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 53-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a manifold with an almost contact metric structure $(M, \vec{\xi}, \eta, \varphi,g)$ and an endomorphism $N:D\rightarrow D$ the notion of an $N$-prolonged connection $\nabla^N=(\nabla,N)$, where $\nabla$ is an interior connection, is introduced. An endomorphism $N:D\rightarrow D$ found such that the curvature tensor of the $N$-prolonged connection coincides with the Wagner curvature tensor. It is proven that the curvature tensor of the interior connection equals zero if and only if on the manifold $M$ exists an atlas of adapted charts for that the coefficients of the interior connection are zero. A one-to-one correspondence between the set of $N$-prolonged and the set of $N$-connections is constructed. It is shown that the class of $N$-connections includes the Tanaka–Webster Schouten–van Kampen connections. An equality expressing the $N$-connection in the terms of the Levi–Civita connection is obtained. The properties of the curvature tensor of the $N$-connection are investigated; this curvature tensor is called in the paper the generalized Wagner curvature tensor. It is shown in particular that if the generalized Wagner curvature tensor in the case of a contact metric space is zero, then there exists a constant admissible vector field oriented in any direction. It is shown that the generalized Wagner curvature tensor may be zero only in the case of the zero endomorphism $N:D\rightarrow D$. Bibliography: 15 titles.
Keywords: almost contact metric structure, $N$-prolonged connection, generalized Wagner curvature tensor, Tanaka–Webster connection, Schouten–van-Kampen connection.
@article{CHEB_2016_17_3_a4,
     author = {S. V. Galaev},
     title = {Generalized {Wagner's} curvature tensor of almost contact metric spaces},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {53--63},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a4/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - Generalized Wagner's curvature tensor of almost contact metric spaces
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 53
EP  - 63
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a4/
LA  - ru
ID  - CHEB_2016_17_3_a4
ER  - 
%0 Journal Article
%A S. V. Galaev
%T Generalized Wagner's curvature tensor of almost contact metric spaces
%J Čebyševskij sbornik
%D 2016
%P 53-63
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a4/
%G ru
%F CHEB_2016_17_3_a4
S. V. Galaev. Generalized Wagner's curvature tensor of almost contact metric spaces. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 53-63. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a4/

[1] Vagner V. V., “The geometry of an $(n-1)$-dimensional nonholonomic manifold in an $n$-dimensional space”, Trudy Sem. Vektor. Tenzor. Analiza, 5, Moscow Univ. Press, M., 1941, 173–255 (Russian)

[2] Vagner V. V., “Geometric interpretation of the motion of nonholonomic dynamical systems”, Trudy Sem. Vektor. Tenzor. Analiza, 5, Moscow Univ. Press, M., 1941, 301–327 (Russian) | MR | Zbl

[3] N. Tanaka, “On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections”, Japan J. Math., 20 (1976), 131–190 | MR

[4] S. Tanno, “Variational problems on contact Riemannian manifolds”, Trans. Amer. Math. Soc., 314:1 (1989), 349–379 | DOI | MR | Zbl

[5] S. M. Webster, “Pseudo-Hermitian structures on a real hypersurface”, J. Diff. Geom., 13 (1978), 25–41 | MR | Zbl

[6] J. Schouten, E. van Kampen, “Zur Einbettungs-und Krummungstheorie nichtholonomer Gebilde”, Math. Ann., 103 (1930), 752–783 | DOI | MR | Zbl

[7] A. Bejancu, “Kähler contact distributions”, Journal of Geometry and Physics, 60:12 (2010), 1958–1967 | DOI | MR | Zbl

[8] Bukusheva A. V., “On geometry of the contact metric spaces with $\varphi$-connection”, Belgorod State University. Scientific Bulletin. Mathematics. Physics, 17(214):40 (2015), 20–24 (Russian) | Zbl

[9] Galaev S. V., “The intrinsic geometry of almost contact metric manifolds”, Izvestiya Saratovskogo un-ta. Seriya «Matematika. Informatika. Mekhanika», 12:1 (2012), 16–22 (Russian)

[10] Bukusheva A. V., Galaev S. V., “Connections on distributions and geodesic sprays”, Izvestija vuzov. Mat. (Russian Mathematics (Izvestija VUZ. Mathematika)), 2013, no. 4, 10–18 (Russian)

[11] Galaev S. V., “Almost contact Kähler manifolds of constant holomorphic sectional curvature”, Izvestija vuzov. Mat. (Russian Mathematics (Izvestija VUZ. Mathematika)), 2014, no. 8, 42–52 (Russian) | MR

[12] Galaev S. V., “Almost contact metric structure determined by N-extended connection”, Yakutian Mathematical Journal, 22:1 (2015), 25–34 (Russian) | MR | Zbl

[13] Galaev S. V., “Characteristic classes Maslov Legendre submanifolds of almost contact Kähler spaces”, Differential geometry of manifolds of figures, 46, Izd-vo BFU im. I. Kanta, Kaliningrad, 2015, 68–75 (Russian)

[14] Krym V. R., Petrov N. N., “The curvature tensor and the Einstein equations for a four-dimensional nonholonomic distribution”, Vestnik St. Petersburgskogo Un-ta. Math., 41:3 (2008), 256–265 | DOI | MR | Zbl

[15] Bejancu A., Cǎlin C., “4D Einstein equations in a general gauge Kaluza–Klein space”, Int. J. Geom. Methods Mod. Phys., 12:3 (2015), 1550036, 18 pp. | DOI | MR | Zbl