Generalized Wagner's curvature tensor of almost contact metric spaces
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 53-63

Voir la notice de l'article provenant de la source Math-Net.Ru

On a manifold with an almost contact metric structure $(M, \vec{\xi}, \eta, \varphi,g)$ and an endomorphism $N:D\rightarrow D$ the notion of an $N$-prolonged connection $\nabla^N=(\nabla,N)$, where $\nabla$ is an interior connection, is introduced. An endomorphism $N:D\rightarrow D$ found such that the curvature tensor of the $N$-prolonged connection coincides with the Wagner curvature tensor. It is proven that the curvature tensor of the interior connection equals zero if and only if on the manifold $M$ exists an atlas of adapted charts for that the coefficients of the interior connection are zero. A one-to-one correspondence between the set of $N$-prolonged and the set of $N$-connections is constructed. It is shown that the class of $N$-connections includes the Tanaka–Webster Schouten–van Kampen connections. An equality expressing the $N$-connection in the terms of the Levi–Civita connection is obtained. The properties of the curvature tensor of the $N$-connection are investigated; this curvature tensor is called in the paper the generalized Wagner curvature tensor. It is shown in particular that if the generalized Wagner curvature tensor in the case of a contact metric space is zero, then there exists a constant admissible vector field oriented in any direction. It is shown that the generalized Wagner curvature tensor may be zero only in the case of the zero endomorphism $N:D\rightarrow D$. Bibliography: 15 titles.
Keywords: almost contact metric structure, $N$-prolonged connection, generalized Wagner curvature tensor, Tanaka–Webster connection, Schouten–van-Kampen connection.
@article{CHEB_2016_17_3_a4,
     author = {S. V. Galaev},
     title = {Generalized {Wagner's} curvature tensor of almost contact metric spaces},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {53--63},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a4/}
}
TY  - JOUR
AU  - S. V. Galaev
TI  - Generalized Wagner's curvature tensor of almost contact metric spaces
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 53
EP  - 63
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a4/
LA  - ru
ID  - CHEB_2016_17_3_a4
ER  - 
%0 Journal Article
%A S. V. Galaev
%T Generalized Wagner's curvature tensor of almost contact metric spaces
%J Čebyševskij sbornik
%D 2016
%P 53-63
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a4/
%G ru
%F CHEB_2016_17_3_a4
S. V. Galaev. Generalized Wagner's curvature tensor of almost contact metric spaces. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 53-63. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a4/