Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_3_a4, author = {S. V. Galaev}, title = {Generalized {Wagner's} curvature tensor of almost contact metric spaces}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {53--63}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a4/} }
S. V. Galaev. Generalized Wagner's curvature tensor of almost contact metric spaces. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 53-63. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a4/
[1] Vagner V. V., “The geometry of an $(n-1)$-dimensional nonholonomic manifold in an $n$-dimensional space”, Trudy Sem. Vektor. Tenzor. Analiza, 5, Moscow Univ. Press, M., 1941, 173–255 (Russian)
[2] Vagner V. V., “Geometric interpretation of the motion of nonholonomic dynamical systems”, Trudy Sem. Vektor. Tenzor. Analiza, 5, Moscow Univ. Press, M., 1941, 301–327 (Russian) | MR | Zbl
[3] N. Tanaka, “On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections”, Japan J. Math., 20 (1976), 131–190 | MR
[4] S. Tanno, “Variational problems on contact Riemannian manifolds”, Trans. Amer. Math. Soc., 314:1 (1989), 349–379 | DOI | MR | Zbl
[5] S. M. Webster, “Pseudo-Hermitian structures on a real hypersurface”, J. Diff. Geom., 13 (1978), 25–41 | MR | Zbl
[6] J. Schouten, E. van Kampen, “Zur Einbettungs-und Krummungstheorie nichtholonomer Gebilde”, Math. Ann., 103 (1930), 752–783 | DOI | MR | Zbl
[7] A. Bejancu, “Kähler contact distributions”, Journal of Geometry and Physics, 60:12 (2010), 1958–1967 | DOI | MR | Zbl
[8] Bukusheva A. V., “On geometry of the contact metric spaces with $\varphi$-connection”, Belgorod State University. Scientific Bulletin. Mathematics. Physics, 17(214):40 (2015), 20–24 (Russian) | Zbl
[9] Galaev S. V., “The intrinsic geometry of almost contact metric manifolds”, Izvestiya Saratovskogo un-ta. Seriya «Matematika. Informatika. Mekhanika», 12:1 (2012), 16–22 (Russian)
[10] Bukusheva A. V., Galaev S. V., “Connections on distributions and geodesic sprays”, Izvestija vuzov. Mat. (Russian Mathematics (Izvestija VUZ. Mathematika)), 2013, no. 4, 10–18 (Russian)
[11] Galaev S. V., “Almost contact Kähler manifolds of constant holomorphic sectional curvature”, Izvestija vuzov. Mat. (Russian Mathematics (Izvestija VUZ. Mathematika)), 2014, no. 8, 42–52 (Russian) | MR
[12] Galaev S. V., “Almost contact metric structure determined by N-extended connection”, Yakutian Mathematical Journal, 22:1 (2015), 25–34 (Russian) | MR | Zbl
[13] Galaev S. V., “Characteristic classes Maslov Legendre submanifolds of almost contact Kähler spaces”, Differential geometry of manifolds of figures, 46, Izd-vo BFU im. I. Kanta, Kaliningrad, 2015, 68–75 (Russian)
[14] Krym V. R., Petrov N. N., “The curvature tensor and the Einstein equations for a four-dimensional nonholonomic distribution”, Vestnik St. Petersburgskogo Un-ta. Math., 41:3 (2008), 256–265 | DOI | MR | Zbl
[15] Bejancu A., Cǎlin C., “4D Einstein equations in a general gauge Kaluza–Klein space”, Int. J. Geom. Methods Mod. Phys., 12:3 (2015), 1550036, 18 pp. | DOI | MR | Zbl