From Diophantine approximations to Diophantine equations
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 38-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let in the real $n$-dimensional space $\mathbb{R}^n=\{X\}$ be given $m$ real homogeneous forms $f_i(X)$, $i=1,\dotsc,m$, $2\leqslant m\leqslant n$. The convex hull of the set of points $G(X)=(|f_1(X)|,\dotsc,|f_m(X)|)$ for integer $X\in\mathbb Z^n$ in many cases is a convex polyhedral set. Its boundary for $||X||\mathrm{const}$ can be computed by means of the standard program. The points $X\in\mathbb Z^n$ are called boundary points if $G(X)$ lay on the boundary. They correspond to the best Diophantine approximations $X$ for the given forms. That gives the global generalization of the continued fraction. For $n=3$ Euler, Jacobi, Dirichlet, Hermite, Poincaré, Hurwitz, Klein, Minkowski, Brun, Arnold and a lot of others tried to generalize the continued fraction, but without a succes. Let $p(\xi)$ be an integer real irreducible in $\mathbb Q$ polynomial of the order $n$ and $\lambda$ be its root. The set of fundamental units of the ring $\mathbb Z[\lambda]$ can be computed using boundary points of some set of linear and quadratic forms, constructed by means of the roots of the polynomial $p(\xi)$. Similary one can compute a set of fundamental units of other rings of the field $\mathbb Q(\lambda)$. Up today such sets of fundamental units were computed only for $n=2$ (using usual continued fractions) and $n=3$ (using the Voronoi algorithms). Our approach generalizes the continued fraction, gives the best rational simultaneous approximations, fundamental units of algebraic rings of the field $\mathbb Q(\lambda)$ and all solutions of a certain class of Diophantine equations for any $n$. Bibliography: 16 titles.
Keywords: generalization of continued fraction, Diophantine approximations, set of fundamental units, fundamental domain, Diophantine equation.
@article{CHEB_2016_17_3_a3,
     author = {A. D. Bruno},
     title = {From {Diophantine} approximations to {Diophantine} equations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {38--52},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a3/}
}
TY  - JOUR
AU  - A. D. Bruno
TI  - From Diophantine approximations to Diophantine equations
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 38
EP  - 52
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a3/
LA  - ru
ID  - CHEB_2016_17_3_a3
ER  - 
%0 Journal Article
%A A. D. Bruno
%T From Diophantine approximations to Diophantine equations
%J Čebyševskij sbornik
%D 2016
%P 38-52
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a3/
%G ru
%F CHEB_2016_17_3_a3
A. D. Bruno. From Diophantine approximations to Diophantine equations. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 38-52. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a3/

[1] Khinchin A. Ya., Continued fractions, Noordhoff, Groningen, 1963 | MR | Zbl

[2] Bruno A. D., “The expansion of algebraic numbers into continued fractions”, USSR Comp. Math. Math. Phys., 4:2 (1964), 1–15 | DOI | MR | Zbl

[3] Bruno A. D., “New generalizations of continued fraction. I”, Functiones et Approximatio, 43:1 (2010), 55–104 | DOI | MR | Zbl

[4] Bruno A. D., On geometric methods in works by V. I. Arnold and V. V. Kozlov, arXiv: 1401.6320 [math.CA]

[5] Bruno A. D., “Universal generalization of the continued fraction algorithm”, Chebyshevsky sbornik, 16:2 (2015), 35–65 ; Собр. соч. в 3-х томах, т. 1, Из-во АН УССР, Киев, 1952, 197–391

[6] Voronoi G. F., On Generalization of the Algorithm of Continued Fraction, Warsawa University, 1896

[7] Bruno A. D., “The structure of multidimensional Diophantine approximations”, Doklady Mathematics, 433:5 (2010), 587–589 | Zbl

[8] Bruno A. D., “Structure of the best diophantine approximations and multidimensional generalizations of the continued fraction”, Chebyshevsky sbornik, 11:1 (2010), 68–73 | MR

[9] Fukuda K., “Exact algorithms and software in optimization and polyhedral computation”, Proceed. ISSAC'08 of XXI International Symposium on Symbolic and Algebraic Computations, ACM, NY, USA, 2008, 333–334 | MR

[10] Barber C. B., Dobkin D. P., Huhdanpaa H. T., “The Quickhull algorithm for convex hulls”, ACM Trans. on Mathematical Software, 22:4 (1996), 469–483 http://www.qhull.org | DOI | MR | Zbl

[11] Borevich Z. I., Shafarevich I. R., Number Theory, Academic Press, 1966 | MR | Zbl

[12] Bruno A. D., Parusnikov V. I., “Polyhedra of absolute values for triple of linear forms”, Keldysh Institute preprints, 2003, 093, 20 pp.

[13] Bruno A. D., “Generalization of continued fraction”, Chebyshevsky sbornik, 7:3 (2006), 4–71 | MR

[14] Parusnikov V. I., “4-dimensional generalization of the continued fractions”, Keldysh Institute preprints, 2011, 078, 16 pp.

[15] Bruno A. D., “From Diophantine approximations to Diophantine equations”, Keldysh Institute preprints, 2016, 001, 20 pp.

[16] Bruno A. D., “Computation of the best Diophantine approximations and the fundamental units of the algebraic fields”, Doklady Mathematics, 93:3 (2016), 243–247 | DOI | MR | Zbl