Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_3_a2, author = {L. V. Bessonov and T. A. Kuznetsova and S. V. Chumakova}, title = {About numerical realization of the method of subsequent parameters perturbation for calculating a stress-strain state of shallow shells}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {28--37}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a2/} }
TY - JOUR AU - L. V. Bessonov AU - T. A. Kuznetsova AU - S. V. Chumakova TI - About numerical realization of the method of subsequent parameters perturbation for calculating a stress-strain state of shallow shells JO - Čebyševskij sbornik PY - 2016 SP - 28 EP - 37 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a2/ LA - ru ID - CHEB_2016_17_3_a2 ER -
%0 Journal Article %A L. V. Bessonov %A T. A. Kuznetsova %A S. V. Chumakova %T About numerical realization of the method of subsequent parameters perturbation for calculating a stress-strain state of shallow shells %J Čebyševskij sbornik %D 2016 %P 28-37 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a2/ %G ru %F CHEB_2016_17_3_a2
L. V. Bessonov; T. A. Kuznetsova; S. V. Chumakova. About numerical realization of the method of subsequent parameters perturbation for calculating a stress-strain state of shallow shells. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 28-37. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a2/
[1] Petrov V. V., Successive loading method in nonlinear theory of plates and shells, Izd-vo Sarat. un-ta, Saratov, 1975 (in Russian)
[2] Kuznetsov V. N., Method of sequential perturbation of parameters applied to the simulation of dynamic stability thin-walled shell structures, dis. \ldots d-ra tekhn. nauk, Saratov, 2000 (in Russian)
[3] Petrov V. V., Ovchinnikov I. G., Inozemtsev V. K., The deformation of structural elements of the same–module non-linear inhomogeneous material, Izd-vo Sarat. un-ta, Saratov, 1988 (in Russian)
[4] Kuznetsov V. N., Kuznetsova T. A., Chumakova S. V., “About numerical realization of the successive loading method for calculating the geometrically nonlinear shells”, Mezhvuz. sb. nauch. tr., Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 6, Izd-vo Sarat. un-ta, Saratov, 2010, 27–43 (in Russian) | MR | Zbl
[5] Kuznetsov V. N., Kuznetsova T. A., Chumakova S. V., “Operator methods in nonlinear dynamics”, Mezhvuz. sb. nauch. tr., Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 1, Izd-vo Sarat. un-ta, Saratov, 2003, 70–80 (in Russian)
[6] Chumakova S. V., Pshenov D. A., Shabanov L. E., “To the problem of improving the convergence of the Petrovs method — the method of successive perturbation of parameters”, Problemy prochnosti elementov konstruktsii pod deistviem nagruzok i rabochikh sred, Mezhvuz. nauch. sb., Izd-vo SGTU, Saratov, 2002, 61–64 (in Russian)
[7] Mikhlin S. G., Variational methods in mathematical physics, Izdatel'stvo tekhniko-teoreticheskoi literatury, M., 1967 (in Russian)
[8] Kuznetsov E. B., Shalashilin V. I., “The Cauchy problem for mechanical systems with a finite number of degrees of freedom as the problem of continuing on the best parameter”, PMM, 58:6 (1994), 14–21 (in Russian) | MR
[9] Lions Zh. L., Methods of solving nonlinear boundary value problems, Mir, M., 1972, 104 pp. (in Russian)
[10] Bessonov L. V., “Numerical Implementation of Method of Subsequent Perturbation of Parameters for Computation of Stress-Strain State of a Shell Rigidly Fixed on the Boundaries”, Izv. Sarat. un-ta Nov. ser. Ser. Matematika. Mekhanika. Informatika, 15:1 (2015), 74–79 (in Russian) | DOI | MR
[11] Bessonov L. V., “The numerical implementation of the algorithm of spectral criteria for the local buckling of the shell structure”, Mezhvuz. sb. nauch. tr., Issledovaniia po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 7, Izd-vo Sarat. un-ta, Saratov, 2012, 3–9 (in Russian)
[12] Bessonov L. V., “Numerical realization of the spectral criterion for determining the points of local buckling of the shell structure”, Materialy XIX Mezhdunarodnoi konferentsii po vychislitel'noi mekhanike i sovremennym prikladnym programmnym sistemam, VMSPPS'2015 (Moskva, 2015), 223–225 (in Russian)
[13] Bessonov L. V., “Numerical Realization of The Method of Subsequent Parameters Perturbation for Calculating a Stress-Strain State of The Shell”, Applied Mechanics and Materials, 799–800 (2015), 656–659 | DOI
[14] Bessonov L. V., “Ob operatornom podhode pri raschete napryagenno-deformirovannogo sostoyaniya obolochechnyh konstrukciy”, XI Vserossiiskiy s'ezd po fundamentalnym problemam teoreticheskoy i prikladnoy mehaniki (Kazan, 2015), 467–469 (in Russian)
[15] Bessonov L. V., “Geometriceskie parametry i tochki localnoy poteri ustoychivosti cilindricheskoy obolochki”, Studencheskaya nauka: perekrestki teorii i praktiki, Materialy I Vnutrivuzovskoi nauchno-prakticheskoy konferencii studentov i aspirantov (Saratov, 2013) (in Russian)