Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_3_a16, author = {A. V. Shutov and E. V. Kolomeykina}, title = {The estimation of the number of $p2$-tilings of a plane by a given area polyomino}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {204--214}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a16/} }
TY - JOUR AU - A. V. Shutov AU - E. V. Kolomeykina TI - The estimation of the number of $p2$-tilings of a plane by a given area polyomino JO - Čebyševskij sbornik PY - 2016 SP - 204 EP - 214 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a16/ LA - ru ID - CHEB_2016_17_3_a16 ER -
A. V. Shutov; E. V. Kolomeykina. The estimation of the number of $p2$-tilings of a plane by a given area polyomino. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 204-214. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a16/
[1] Ammann R., Grunbaum B., Shephard G., “Aperiodic tiles”, Discrete and Computational Geometry, 6:1 (1991), 1–25 | DOI | MR
[2] Barequet G., Rote G., Shalah M., “$\lambda>4$”, Algorithms, ESA 2015 Proceedings, Springer, 2015, 83–94 | DOI | MR | Zbl
[3] Bousquet-Melou M., Brak R., “Exactly solved models”, Polygons, Polyominoes and Polycubes, Springer, 2009, 43–78 | DOI | MR | Zbl
[4] Brlek S., Frosini A., Rinaldi S., Vuillon L., “Tilings by translation: enumeration by a rational language approach”, The electronic journal of combinatorics, 13 (2006), R15 | MR | Zbl
[5] Brlek S., Provencal X., Fedou J.-M., “On the tiling by translation problem”, Discrete Applied Mathematics, 157:3 (2009), 464–475 | DOI | MR | Zbl
[6] Fukuda H., Mutoh N., Nakamura G., Schattschneider D., “A method to generate polyominoes and polyiamonds for tilings with rotational symmetry”, Graphs and Combinatorics, 23, Supplement 1 (2007), 259–267 | DOI | MR | Zbl
[7] Fukuda H., Mutoh N., Nakamura G., Schattschneider D., “Enumeration of polyominoes, polyiamonds and polyhexes for isohedral tilings with rotational symmetry”, Computational Geometry and Graph Theory, International Conference, KyotoCGGT 2007, Revised Selected Papers (Kyoto, Japan, June 11–15, 2007), Springer, 2008, 68–78 | DOI | MR | Zbl
[8] Gambini I., Vuillon L., “An algorithm for deciding if a polyomino tiles the plane by translations”, RAIRO Theoretical Informatics and Applications, 41:2 (2007), 147–155 | DOI | MR | Zbl
[9] Golomb S. W., “Checker boards and polyominoes”, American Mathematical Monthly, 61 (1954), 672–682 | DOI | MR
[10] Jensen I., “Counting polyominoes: a parallel implementation for cluster computing”, Computational Science, ICCS 2003 Proceedings, v. III, Springer, 2003, 203–212
[11] Klarner D., “A cell growth problems”, Cand. J. Math., 19 (1967), 851–863 | DOI | MR | Zbl
[12] Klarner D. A., Rivest R. L., “A procedure for improving the upper bound for the number of $n$-ominoes”, Canad. J. Math., 25 (1973), 585–602 | DOI | MR | Zbl
[13] Madras N., Slade G., The self-avoiding walk, Springer, 1996, 427 pp. | DOI | MR
[14] Myers J., Polyomino, polyhex and polyiamond tiling, , 2016 https://www.polyomino.org.uk/mathematics/polyform-tiling/
[15] Rhoads G. C., Planar tilings and the search for an aperiodic prototile, PhD dissertation, Rutgers University, 2003 | DOI
[16] Rhoads G. C., “Planar tilings by polyominoes, polyhexes, and polyiamonds”, Journal of Computational and Applied Mathematics, 174:2 (2005), 329–353 | DOI | MR | Zbl
[17] Schattschneider D., Will it tile? Try the Conway criterion!, Mathematics Magazine, 53:4 (1980), 224–233 | DOI | MR | Zbl
[18] Gardner M., Mathematical puzzles and diversions, 2nd edition, Dover, 1999, 447 pp.
[19] Gardner M., New mathematical diversions from Scientific American, Simon and Shuster, 1966, 496 pp. | MR
[20] Gardner M., Mathematical games from Scientific American, Simon and Shuster, 1974, 456 pp.
[21] Gardner M., Time travel and other mathematics bewilderments, Freeman and Co., New York, 1988, 341 pp. | MR | MR
[22] Golomb S. W., Polyominoes, 2nd edition, Princeton University Press, New Jercey, 1994, 196 pp. | MR | Zbl
[23] Maleev A. V., “Algorithm and computer-program search for variants of polyomino packings in plane”, Crystallography Reports, 60:6 (2015), 986–992 | DOI
[24] Maleev A. V., Shutov A. V., “On the number of translational plane tilings by polyomino”, Mathematical Research in Natural sciences (Apatity, 2013), 101–106
[25] Nesterenko Ju. V., Galochkin A. I., Shidlovskij A. B., Introduction in number theory, Izdatel'stvo Moskovskogo Universiteta, M., 1984, 152 pp. | MR
[26] Shutov A. V., Kolomeykina E. V., “On the number of lattice tilings of a plane by a given area polyomino”, Mathematical Research in Natural sciences, Proc. IX All-Russian scientfic school (Apatity, 2014), 147–152
[27] Shutov A. V., Kolomeykina E. V., “The estimation of the number of lattice tilings of a plane by a given area polyomino”, Modeling and Analysis of Information Systems, 20:5 (2013), 148–157
[28] Shutov A. V., Kolomeykina E. V., “The estimating of the number of lattice tilings of a plane by a given area centrosymmetrical polyomino”, Modeling and Analysis of Information Systems, 22:2 (2015), 295–303 | MR