The estimation of the number of $p2$-tilings of a plane by a given area polyomino
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 204-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem about a number of $p2$-tilings of a plane by a given area polyominoes. A polyomino is a connected plane geometric figure formed by joining one or more unit squares edge to edge. At present, various combinatorial enumeration problems connected to the polyomino are actively studied. There are some interesting problems on enuneration of various classes of polyominoes and enumeration of tilings of finite regions or a whole plane by polyominoes. The tiling is called $p2$-tiling, if each tile can be mapped to any other tile by the translation or the central symmetry, and this transformation maps the whole tiling to itself. $p2$-tilings are special case of regular plane tilings. Let $t(n)$ be a number of $p2$-tilings of a plane by a $n$-area polyomino such that the lattices of periods of these tilings are sublattices of $\mathbb{Z}^2$. It is proved that following inequality is true: $ C_12^n \leq t(n)\leq C_2n^4(2.68)^n$. To prove the lower bound we use the exact construction of required tilings. The proof of the upper bound is based on the Conway criterion of the existence of $p2$-tilings of a plane. Also, the upper bound depends on the theory of self-avoiding walks on the square lattice. Earlier similar results were obtained by authors for the number of lattice tilings of a plane by a given area polyomino (it's more simple type of a plane tilings by polyomino), and for the number of lattice tilings of the plane by centrosimmetrical polyomino. Bibliography: 28 titles.
Keywords: tilings, regular tilings, crystallographic groups, $p2$-tilings, polyomino, self-avoiding walks.
@article{CHEB_2016_17_3_a16,
     author = {A. V. Shutov and E. V. Kolomeykina},
     title = {The estimation of the number of $p2$-tilings of a plane by a given area polyomino},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {204--214},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a16/}
}
TY  - JOUR
AU  - A. V. Shutov
AU  - E. V. Kolomeykina
TI  - The estimation of the number of $p2$-tilings of a plane by a given area polyomino
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 204
EP  - 214
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a16/
LA  - ru
ID  - CHEB_2016_17_3_a16
ER  - 
%0 Journal Article
%A A. V. Shutov
%A E. V. Kolomeykina
%T The estimation of the number of $p2$-tilings of a plane by a given area polyomino
%J Čebyševskij sbornik
%D 2016
%P 204-214
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a16/
%G ru
%F CHEB_2016_17_3_a16
A. V. Shutov; E. V. Kolomeykina. The estimation of the number of $p2$-tilings of a plane by a given area polyomino. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 204-214. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a16/

[1] Ammann R., Grunbaum B., Shephard G., “Aperiodic tiles”, Discrete and Computational Geometry, 6:1 (1991), 1–25 | DOI | MR

[2] Barequet G., Rote G., Shalah M., “$\lambda>4$”, Algorithms, ESA 2015 Proceedings, Springer, 2015, 83–94 | DOI | MR | Zbl

[3] Bousquet-Melou M., Brak R., “Exactly solved models”, Polygons, Polyominoes and Polycubes, Springer, 2009, 43–78 | DOI | MR | Zbl

[4] Brlek S., Frosini A., Rinaldi S., Vuillon L., “Tilings by translation: enumeration by a rational language approach”, The electronic journal of combinatorics, 13 (2006), R15 | MR | Zbl

[5] Brlek S., Provencal X., Fedou J.-M., “On the tiling by translation problem”, Discrete Applied Mathematics, 157:3 (2009), 464–475 | DOI | MR | Zbl

[6] Fukuda H., Mutoh N., Nakamura G., Schattschneider D., “A method to generate polyominoes and polyiamonds for tilings with rotational symmetry”, Graphs and Combinatorics, 23, Supplement 1 (2007), 259–267 | DOI | MR | Zbl

[7] Fukuda H., Mutoh N., Nakamura G., Schattschneider D., “Enumeration of polyominoes, polyiamonds and polyhexes for isohedral tilings with rotational symmetry”, Computational Geometry and Graph Theory, International Conference, KyotoCGGT 2007, Revised Selected Papers (Kyoto, Japan, June 11–15, 2007), Springer, 2008, 68–78 | DOI | MR | Zbl

[8] Gambini I., Vuillon L., “An algorithm for deciding if a polyomino tiles the plane by translations”, RAIRO Theoretical Informatics and Applications, 41:2 (2007), 147–155 | DOI | MR | Zbl

[9] Golomb S. W., “Checker boards and polyominoes”, American Mathematical Monthly, 61 (1954), 672–682 | DOI | MR

[10] Jensen I., “Counting polyominoes: a parallel implementation for cluster computing”, Computational Science, ICCS 2003 Proceedings, v. III, Springer, 2003, 203–212

[11] Klarner D., “A cell growth problems”, Cand. J. Math., 19 (1967), 851–863 | DOI | MR | Zbl

[12] Klarner D. A., Rivest R. L., “A procedure for improving the upper bound for the number of $n$-ominoes”, Canad. J. Math., 25 (1973), 585–602 | DOI | MR | Zbl

[13] Madras N., Slade G., The self-avoiding walk, Springer, 1996, 427 pp. | DOI | MR

[14] Myers J., Polyomino, polyhex and polyiamond tiling, , 2016 https://www.polyomino.org.uk/mathematics/polyform-tiling/

[15] Rhoads G. C., Planar tilings and the search for an aperiodic prototile, PhD dissertation, Rutgers University, 2003 | DOI

[16] Rhoads G. C., “Planar tilings by polyominoes, polyhexes, and polyiamonds”, Journal of Computational and Applied Mathematics, 174:2 (2005), 329–353 | DOI | MR | Zbl

[17] Schattschneider D., Will it tile? Try the Conway criterion!, Mathematics Magazine, 53:4 (1980), 224–233 | DOI | MR | Zbl

[18] Gardner M., Mathematical puzzles and diversions, 2nd edition, Dover, 1999, 447 pp.

[19] Gardner M., New mathematical diversions from Scientific American, Simon and Shuster, 1966, 496 pp. | MR

[20] Gardner M., Mathematical games from Scientific American, Simon and Shuster, 1974, 456 pp.

[21] Gardner M., Time travel and other mathematics bewilderments, Freeman and Co., New York, 1988, 341 pp. | MR | MR

[22] Golomb S. W., Polyominoes, 2nd edition, Princeton University Press, New Jercey, 1994, 196 pp. | MR | Zbl

[23] Maleev A. V., “Algorithm and computer-program search for variants of polyomino packings in plane”, Crystallography Reports, 60:6 (2015), 986–992 | DOI

[24] Maleev A. V., Shutov A. V., “On the number of translational plane tilings by polyomino”, Mathematical Research in Natural sciences (Apatity, 2013), 101–106

[25] Nesterenko Ju. V., Galochkin A. I., Shidlovskij A. B., Introduction in number theory, Izdatel'stvo Moskovskogo Universiteta, M., 1984, 152 pp. | MR

[26] Shutov A. V., Kolomeykina E. V., “On the number of lattice tilings of a plane by a given area polyomino”, Mathematical Research in Natural sciences, Proc. IX All-Russian scientfic school (Apatity, 2014), 147–152

[27] Shutov A. V., Kolomeykina E. V., “The estimation of the number of lattice tilings of a plane by a given area polyomino”, Modeling and Analysis of Information Systems, 20:5 (2013), 148–157

[28] Shutov A. V., Kolomeykina E. V., “The estimating of the number of lattice tilings of a plane by a given area centrosymmetrical polyomino”, Modeling and Analysis of Information Systems, 22:2 (2015), 295–303 | MR