On the distribution of elements semigroups of natural numbers~II
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 197-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose there is subset $A$ of positive integers from the interval $[1,q]$ with the following condition. If the elements $a,b$ of $A$ and $ab$ is at most $q$, then $ab$ belongs to $A$. In additition let also know that $|A|$, $\nu$ — is some fixed number, not exceeding 1. In this paper we consider the question of the number of elements belonging to $A$ on the interval with length substantially less than $q$, — on the interval $[1, x]$, where $x$ is much smaller than an arbitrary power of $q$. In this task, in the case when $A$ — is a special set and with certain restrictions on $|A|$ and $x$, there exists some results. So, from the work of J. Bourgain, S. Konyagin and I. Shparlinskii there are nontrivial estimates in the case when $A$ — a multiplicative subgroup of invertible elements of the residue ring modulo prime. The initial problem generalize it to the case of semigroups instead of multiplicative subgroups. It should be noted that there are quite definite results on this task. The main result of this work is to derived a new estimate on the number of elements of the semigroup of natural numbers given short interval from 1 to $x$. These estimates are meaningful when $x$ is much smaller than any power of $q$. More precisely, let $A$ — our semigroup, $g: =\frac{\log{\log x}}{\log{\log q}}, x = q^{o (1)}$ for $q$ tends to infinity. Then the number of elements of $A$ in the interval $(1,x)$ does not exceed $x^{1-C (g,\nu)+o(1)}$, where $C(g,\nu )$ — some clearly written positive function. Previous result relates to the estimation of function $C(g,\nu)$, a new estimate for the $C(g,\nu)$ improves the previous result for a certain range of parameters $(g,\nu)$. We essentially use in the proof the distribution of smooth numbers, the numbers with a large part of the smooth part, estimates on the number of divisors of a fixed number in a given interval. We use some results of J. Bourgain, S. Konyagin and I. Shparlinski. Bibliography: 15 titles.
Keywords: semigroup, distribution, smooth numbers, divisibility, divisors.
@article{CHEB_2016_17_3_a15,
     author = {Yu. N. Shteinikov},
     title = {On the distribution of elements semigroups of natural {numbers~II}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {197--203},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a15/}
}
TY  - JOUR
AU  - Yu. N. Shteinikov
TI  - On the distribution of elements semigroups of natural numbers~II
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 197
EP  - 203
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a15/
LA  - ru
ID  - CHEB_2016_17_3_a15
ER  - 
%0 Journal Article
%A Yu. N. Shteinikov
%T On the distribution of elements semigroups of natural numbers~II
%J Čebyševskij sbornik
%D 2016
%P 197-203
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a15/
%G ru
%F CHEB_2016_17_3_a15
Yu. N. Shteinikov. On the distribution of elements semigroups of natural numbers~II. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 197-203. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a15/

[1] Hildebrand A., Tenenbaum G., “Integers without large prime factors”, J. Theorie des Nombres de Bordeaux, 5:2 (1993), 411–484 | DOI | MR | Zbl

[2] Prachar K., Distribution of prime numbers, Mir, M., 1967, 512 pp. (Russian)

[3] Bourgain J., Konyagin S., Shparlinski I., “Distribution of elements of cosets of small subgroups and applications”, International Math Research Notices, 201:9 (2012), 1968–2009 | MR

[4] Banks W., Shparlinski I., “Integers with a large smooth divisor”, Electronic journal of combinatorial number theory, 7 (2007) | MR

[5] Tenenbaum G., Introduction to analytic and probabilistic number theory, Cambridge Universit Press, Cambridge, UK, 1995 | MR | Zbl

[6] Shteinikov Y. N., “On the distribution of semigroups of natural numbers”, Chebishev's sbornik, 13:3 (2012), 91–99

[7] Malykhin Y. V., “Estimates of exponential sums modulo $p^{2}$”, Fundamentalnaya i prikladnaya matematika, 11:6 (2005), 81–94 | MR | Zbl

[8] Malykhin Y. V., “Estimates of exponential sums modulo $p^{r}$”, Mathematical Notes, 80:5 (2006), 793–796 | DOI | MR | Zbl

[9] Bourgain J., Konyagin S., Shparlinski I., “Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithm”, Int. Math Research Notices, 2008, rnn090, 1–29 | MR

[10] Bourgain J., Ford K., Konyagin S., Shparlinski I., “On the divisibility of Fermat Quotients”, Michigan J. Math., 59:2 (2010), 313–328 | DOI | MR | Zbl

[11] Bourgain J., Konyagin S., “Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order”, C. R. Math. Acad. Sci. Paris, 337:2 (2003), 75–80 | DOI | MR | Zbl

[12] Heath-Brown D. R., Konyagin S., “New bounds for Gauss sums derived from kth powers, and for Heilbronn's exponential sum”, Q. J. Math., 51:2 (2000), 221–235 | DOI | MR | Zbl

[13] Konyagin S., Shparlinski I., Character sums with exponential functions, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[14] Shkredov I., “On Heilbronn's exponential sum”, Q. J. Math., 64:4 (2013), 1221–1230 | DOI | MR | Zbl

[15] Zhou B., “A note on exponential sums over subgroups of $ \mathbb Z_{p^{2}}^{*}$ and their applications”, J. Number Theory, 130:11 (2010), 2467–2479 | DOI | MR | Zbl