On transformations of periodic sequences
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 191-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of essential problems in generating pseudo-random numbers is the problem of periodicity of the resulting numbers. Some generators output periodic sequences. To avoid it several ways are used. Here we present the following approach: supposed we have some order in the considered set. Let's invent some algorithm which produces disorder in the set. E.g. if we have a periodic sequence of integers, let's construct an irrational number implying the given set. Then the figures of the resulting number form a non-periodic sequence. Here we can use continued fractions and Lagrange's theorem asserts that the resulting number is irrational. Another approach is to use series of the form $\sum_{n=0}^\infty \frac{a_n}{n!}$ with a periodic sequence of integers $\{a_n\}, a_{n+T}=a_n$ which is irrational. Here we consider polyadic series $\sum_{n=0}^\infty a_n n!$ with a periodic sequence of positive integers $\{a_n\},a_{n+T} = a_n$ and describe some of their properties. Bibliography: 15 titles.
Keywords: periodic sequences, polyadic integers.
@article{CHEB_2016_17_3_a14,
     author = {V. G. Chirskii},
     title = {On transformations of periodic sequences},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {191--196},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a14/}
}
TY  - JOUR
AU  - V. G. Chirskii
TI  - On transformations of periodic sequences
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 191
EP  - 196
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a14/
LA  - ru
ID  - CHEB_2016_17_3_a14
ER  - 
%0 Journal Article
%A V. G. Chirskii
%T On transformations of periodic sequences
%J Čebyševskij sbornik
%D 2016
%P 191-196
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a14/
%G ru
%F CHEB_2016_17_3_a14
V. G. Chirskii. On transformations of periodic sequences. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 191-196. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a14/

[1] Knuth D., The art of computer programming, Addison-Wesley, 1969 | MR | Zbl

[2] Khintchin A. Ya., Continued fractions, Univ. Chicago Press, 1964 | Zbl

[3] Lang S., Introduction to Diophantine approximation, Addison-Wesley, 1966 | MR

[4] Chirskii V. G., Nesterenko A. Yu., “On an approach to transforming periodic sequences”, Discretnaya matematica, 27:4 (2015), 150–157 (Russian) | DOI | MR

[5] Nesterenko Yu. V., “Hermite–Pade approximations of generalized hypergeometric functions”, Russ. Acad. Sci. Sb. Math., 85 (1995), 189–219 | MR | Zbl

[6] Chirskii V. G., “Arithmetic properties of polyadic series with periodic coefficients”, Doklady Mathematics, 90:3 (2014), 766–768 | DOI | DOI | MR | Zbl

[7] Novoselov E. V., Introduction to polyadic calculus, Petrozavodsk, 1982, 112 pp. (Russian)

[8] Postnikov A. G., Introduction to analytic number theory, Nauka, M., 1971, 416 pp. (Russian)

[9] Chirskii V. G., “Arithmetic properties of polyadic integers”, Tchebyshevskiy sbornik, 16:1 (2015), 254–264 (Russian) | MR

[10] Chirskii V. G., Matveev V. Yu., “On a series of products of terms of an arithmetic progression”, Prepodavatel 21 veka, 2013, no. 4, 245–254 (Russian) | MR

[11] Matveev V. Yu., “On the values of a certain series at points, well approximable by positive integers”, Prepodavatel 21 veka, 2013, no. 4, 339–354 (Russian) | MR

[12] Matveev V. Yu., “On the infinite algebraic independence of certain polyadic numbers”, Proceedings of an international conference "Matematica i Informatica" (Moscow, March 13–17, 2016), 125–126 (Russian)

[13] Chirskii V. G., “On transformations of periodic sequences”, Proceedings of an international conference "Matematica i Informatica" (Moscow, March 13–17, 2016), 143–144 (Russian)

[14] Luzhina L. M., Makarov Yu. N., “A sufficient condition of the algebraic dependence of polyadic series”, Proceedings of an international conference "Matematica i Informatica" (Moscow, March 13–17, 2016), 123–124 (Russian)

[15] Chirskii V. G., Matveev V. Yu., “On certain properties of polyadic expansions”, Chebyshevskiy sbornik, 14:2 (2013), 163–172 (Russian)