On transformations of periodic sequences
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 191-196

Voir la notice de l'article provenant de la source Math-Net.Ru

One of essential problems in generating pseudo-random numbers is the problem of periodicity of the resulting numbers. Some generators output periodic sequences. To avoid it several ways are used. Here we present the following approach: supposed we have some order in the considered set. Let's invent some algorithm which produces disorder in the set. E.g. if we have a periodic sequence of integers, let's construct an irrational number implying the given set. Then the figures of the resulting number form a non-periodic sequence. Here we can use continued fractions and Lagrange's theorem asserts that the resulting number is irrational. Another approach is to use series of the form $\sum_{n=0}^\infty \frac{a_n}{n!}$ with a periodic sequence of integers $\{a_n\}, a_{n+T}=a_n$ which is irrational. Here we consider polyadic series $\sum_{n=0}^\infty a_n n!$ with a periodic sequence of positive integers $\{a_n\},a_{n+T} = a_n$ and describe some of their properties. Bibliography: 15 titles.
Keywords: periodic sequences, polyadic integers.
@article{CHEB_2016_17_3_a14,
     author = {V. G. Chirskii},
     title = {On transformations of periodic sequences},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {191--196},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a14/}
}
TY  - JOUR
AU  - V. G. Chirskii
TI  - On transformations of periodic sequences
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 191
EP  - 196
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a14/
LA  - ru
ID  - CHEB_2016_17_3_a14
ER  - 
%0 Journal Article
%A V. G. Chirskii
%T On transformations of periodic sequences
%J Čebyševskij sbornik
%D 2016
%P 191-196
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a14/
%G ru
%F CHEB_2016_17_3_a14
V. G. Chirskii. On transformations of periodic sequences. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 191-196. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a14/