Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_3_a12, author = {V. V. Nosov}, title = {On automorphisms of strongly regular graph with the parametrs $(1276,50,0,2)$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {178--185}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a12/} }
V. V. Nosov. On automorphisms of strongly regular graph with the parametrs $(1276,50,0,2)$. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 178-185. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a12/
[1] Makhnev A. A., Paduchikh D. V., “Automorphisms of Aschbacher Graphs”, Algebra and logic, 40:2 (2001), 69–74 | DOI | MR | Zbl
[2] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc., 1989 | MR | Zbl
[3] Makhnev A. A., Minakova I. M., “On automorphisms of strongly regular graphs with the parameters $\lambda=1$ and $\mu=2$”, Diskr. Mat., 16:1 (2004), 95–104 | DOI | Zbl
[4] Makhnev A. A., Nosov V. V., “On automorphisms of strongly regular graphs with $\lambda=0$, $ \mu=2$”, Sb. Math., 195:3 (2004), 347–367 | DOI | DOI | MR | Zbl
[5] Nosov V. V., “On automorphisms graph with the parameters $(704,37, 0, 2)$”, Problemy teorticheskoj i prikladnoj matematiki, Trudy 36th Regionalnoy molodejnoy conferencii, UB of RAS, Ekaterinburg, 2005, 55–60
[6] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl
[7] Willbrink H. A., Brouwer A. E., “A $(57, 14, 1)$ strongly regular graph does not exist”, Proc. Kon. Nederl. Akad. Ser. A, 45:1 (1983), 117–121 | MR
[8] Cameron P., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, 1999 | MR | Zbl
[9] E. Bannai, T. Ito, Algebraic combinatorics, v. I, Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984 | MR | Zbl
[10] Cameron P., Van Lint J., Designs, Graphs, Codes and their Links, London Math. Soc. Student Texts, 22, Cambr. Univ. Press, 1981, 240 pp. | MR
[11] Higman D. G., “Finite permutation groups of rank 3”, Math. Z., 86 (1964), 145–156 | DOI | MR | Zbl
[12] Higman D. G., “Primitive rank 3 groups with a prime subdegree”, Math. Z., 91 (1966), 70–86 | DOI | MR | Zbl
[13] Higman D. G., “Intersection matricies for finite permutation groups”, J. Algebra, 6 (1967), 22–42 | DOI | MR | Zbl
[14] Higman D. G., “On finite affine planes of rank 3”, Math. Z., 104 (1968), 147–149 | DOI | MR | Zbl
[15] Higman D. G., “A survey of some questions and resalts about rank 3 permutation groups”, Actes, Cjngres Int. Math. Rome, 1 (1970), 361–365 | MR
[16] Higman D. G., “Characterization of families of rank 3 permutation groups by the subdegrees. I; II”, Arth. Math., 21 (1970), 151–156 ; 353–361 | DOI | MR | Zbl | MR | Zbl
[17] Nakagawa N., “On strongly regular graphs with parameters $(k,0,2)$ and their antipodal double cover”, Hokkaido Math. Soc., 30 (2001), 431–450 | DOI | MR | Zbl