On automorphisms of strongly regular graph with the parametrs $(1276,50,0,2)$
Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 178-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma$ be a strongly regular graph with parameters $(v,k,0,2)$. Then $k=u^2+1$, $v=(u^4+3u^2+4)/2$ and $u \equiv 1, 2, 3(mod 4)$. If $u=1$, then $\Gamma$ has parametrs $(4,2,0,2)$ — tetragonal graph. If $u=2$, then $\Gamma$ has parametrs $(15,5,0,2)$ — Clebsch graph. If $u=3$, then $\Gamma$ has parametrs $(56,10,0,2)$ — Gewirtz graph. If $u=5$ then hypothetical strongly regular graph$\Gamma$ has parametrs $(352,26,0,2)$ [4]. If $u=5$ then hypothetical strongly regular graph$\Gamma$ has parametrs $(704,37,0,2)$ [5]. Let $u=7$, then $\Gamma$ has parametrs $(1276,50,0,2)$. Let $G$ be the automorphism group of a hypothetical strongly regular graph with parameters $(1276, 50, 0, 2)$. Possible orders are found and the structure of fixed-point subgraphs is determined for elements of prime order in $G$. With the use of theory of characters of finite groups we find the possible orders and the structures of subgraphs of the fixed points of automorphisms of the graph with parameters $(1276,50,0,2)$. It proved that if the graph with parametrs $(1276,50,0,2)$ exist, its automorphism group divides $2^l\cdot 3\cdot 5^m\cdot 7\cdot 11\cdot 29$. In particulary, $G$ — solvable group. Bibliography: 17 titles.
Keywords: strongly regular graph, prime order automorphisms of strongly regular graph, fixed-point subgraphs.
@article{CHEB_2016_17_3_a12,
     author = {V. V. Nosov},
     title = {On automorphisms of strongly regular graph with the parametrs $(1276,50,0,2)$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {178--185},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a12/}
}
TY  - JOUR
AU  - V. V. Nosov
TI  - On automorphisms of strongly regular graph with the parametrs $(1276,50,0,2)$
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 178
EP  - 185
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a12/
LA  - ru
ID  - CHEB_2016_17_3_a12
ER  - 
%0 Journal Article
%A V. V. Nosov
%T On automorphisms of strongly regular graph with the parametrs $(1276,50,0,2)$
%J Čebyševskij sbornik
%D 2016
%P 178-185
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a12/
%G ru
%F CHEB_2016_17_3_a12
V. V. Nosov. On automorphisms of strongly regular graph with the parametrs $(1276,50,0,2)$. Čebyševskij sbornik, Tome 17 (2016) no. 3, pp. 178-185. http://geodesic.mathdoc.fr/item/CHEB_2016_17_3_a12/

[1] Makhnev A. A., Paduchikh D. V., “Automorphisms of Aschbacher Graphs”, Algebra and logic, 40:2 (2001), 69–74 | DOI | MR | Zbl

[2] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin etc., 1989 | MR | Zbl

[3] Makhnev A. A., Minakova I. M., “On automorphisms of strongly regular graphs with the parameters $\lambda=1$ and $\mu=2$”, Diskr. Mat., 16:1 (2004), 95–104 | DOI | Zbl

[4] Makhnev A. A., Nosov V. V., “On automorphisms of strongly regular graphs with $\lambda=0$, $ \mu=2$”, Sb. Math., 195:3 (2004), 347–367 | DOI | DOI | MR | Zbl

[5] Nosov V. V., “On automorphisms graph with the parameters $(704,37, 0, 2)$”, Problemy teorticheskoj i prikladnoj matematiki, Trudy 36th Regionalnoy molodejnoy conferencii, UB of RAS, Ekaterinburg, 2005, 55–60

[6] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[7] Willbrink H. A., Brouwer A. E., “A $(57, 14, 1)$ strongly regular graph does not exist”, Proc. Kon. Nederl. Akad. Ser. A, 45:1 (1983), 117–121 | MR

[8] Cameron P., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, 1999 | MR | Zbl

[9] E. Bannai, T. Ito, Algebraic combinatorics, v. I, Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984 | MR | Zbl

[10] Cameron P., Van Lint J., Designs, Graphs, Codes and their Links, London Math. Soc. Student Texts, 22, Cambr. Univ. Press, 1981, 240 pp. | MR

[11] Higman D. G., “Finite permutation groups of rank 3”, Math. Z., 86 (1964), 145–156 | DOI | MR | Zbl

[12] Higman D. G., “Primitive rank 3 groups with a prime subdegree”, Math. Z., 91 (1966), 70–86 | DOI | MR | Zbl

[13] Higman D. G., “Intersection matricies for finite permutation groups”, J. Algebra, 6 (1967), 22–42 | DOI | MR | Zbl

[14] Higman D. G., “On finite affine planes of rank 3”, Math. Z., 104 (1968), 147–149 | DOI | MR | Zbl

[15] Higman D. G., “A survey of some questions and resalts about rank 3 permutation groups”, Actes, Cjngres Int. Math. Rome, 1 (1970), 361–365 | MR

[16] Higman D. G., “Characterization of families of rank 3 permutation groups by the subdegrees. I; II”, Arth. Math., 21 (1970), 151–156 ; 353–361 | DOI | MR | Zbl | MR | Zbl

[17] Nakagawa N., “On strongly regular graphs with parameters $(k,0,2)$ and their antipodal double cover”, Hokkaido Math. Soc., 30 (2001), 431–450 | DOI | MR | Zbl