On amenable subgroups of $F$-groups
Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 128-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

When studying the Banach–Tarski paradox, John von Neumann (1929) introduced the concept of amenable group: a group $G$ is amenable, if it has a left invariant nontrivial finitely additive measure, i.e. a non-negative valued function $\mu$ defined on the set $P(G)$ of all subsets of the set $G$ satisfying $\mu (G) \, > \, 0$, for all non-intersecting subsets $U$ $V$ of the set $G$ the equality $ \mu (U \cup V) \, = \, \mu (U ) \, + \,\mu ( V) $ holds, for any subset $U$ of the set $G$ and for all element $g$ of the group $G$ the equality $ \mu (g U ) = \mu (U ) $ holds. John von Neumann (1929) found that any locally solvable group is amenable, and any free non-cyclic group is non-amenable. Since a subgroup of an amenable group is amenable itsef, then any group with an embedded free group of rank 2, is non-amenable. A hypothesis going back to this John von Neumann (1929) work, consists in amenablility of any group in which no free group of rank 2 can be emedded. This leads to the concept of von Neumann alternative for a class $C$ of groups: for a class $C$ of groups von Neumann alternative for amenability is valid, if for an arbitrary group $G$ from this class the following statement holds: A group $G$ is either amenable or it contains a subgroup isomorphic to a free $F_2$ group of rank 2. The original J. von Neumann hypothesis can be considered as von Neumann alternative for amenability for the class of all groups. The von Neumann alternative for amenability holds for the class of subgroups of groups with one definig relation as well as for the class of all groups satisfying small cancellation conditions. In this work we establish the validity of von Neumann alternative for amenability of subgroups of $F$-groups. The following equivalence is shown for an arbitrary subgroup $G$ of any $F$-group: A group $G$ is either amenable or it contains a subgroup isomorphic to a free $F_2$ group of rank 2. Bibliography: 15 titles.
Keywords: Fuchsian groups, $F$-groups, amenable groups, Tits' alternative, von Neumann alternative.
@article{CHEB_2016_17_2_a6,
     author = {V. G. Durnev and O. V. Zetkina and A. I. Zetkina},
     title = {On amenable subgroups of  $F$-groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {128--136},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a6/}
}
TY  - JOUR
AU  - V. G. Durnev
AU  - O. V. Zetkina
AU  - A. I. Zetkina
TI  - On amenable subgroups of  $F$-groups
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 128
EP  - 136
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a6/
LA  - ru
ID  - CHEB_2016_17_2_a6
ER  - 
%0 Journal Article
%A V. G. Durnev
%A O. V. Zetkina
%A A. I. Zetkina
%T On amenable subgroups of  $F$-groups
%J Čebyševskij sbornik
%D 2016
%P 128-136
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a6/
%G ru
%F CHEB_2016_17_2_a6
V. G. Durnev; O. V. Zetkina; A. I. Zetkina. On amenable subgroups of  $F$-groups. Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 128-136. http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a6/

[1] Neumann J., “Zur allgemeinen Theorie des Masses”, Fund. Math., 13 (1929), 73–116 (accessed 25 June 2016) http://eudml.org/doc/211921 | Zbl

[2] Tits J., “Free subgroups in linear groups”, J. Algebra, 20 (1972), 250–270 | DOI | MR | Zbl

[3] Durnev V. G., “On some subgroups of Fuchsian groups”, Group theory and homological algebra, Yaroslavl State University, 1998, 69–77

[4] Durnev V. G., Zetkina O. V., Zetkina A. I., “On the Tits' alternative for subgroups of $F$-groups”, Tchebyshev Sbornik, XV:1(49) (2014), 77–85 | Zbl

[5] Durnev V. G., “On the commutator width of the $B_3$ and $B_4$ braid groups”, XIX USSR Algebraic Conference Reports (L'vov, 1987)

[6] Lyndon R. C., Schupp P. E., Combinatorial Group Theory, Springer, Berlin–Heidelberg, 2001 | MR | MR | Zbl

[7] Moldavanskii D. I., “Certain subgroups of groups with a single defining relation”, Siberian Mathematical Journal, 8:6 (1967), 1039–1048 | DOI | MR

[8] Ol'shanskii A. Yu., “On the problem of the existence of an invariant mean on a group”, Russian Mathematical Surveys, 35:4 (1980), 199–200 | DOI

[9] Adyan S. I., “Random walks on free periodic groups”, Mathematics of the USSR-Izvestiya, 21:3 (1983), 425–434 | DOI | MR | Zbl | Zbl

[10] Chebotar' A. A., “Subgroups of groups with one defining relation that contains no free subgroups of rank 2”, Algebra and Logic, 10:5 (1971), 353–362 | DOI | MR | MR | Zbl

[11] Karrass A., Solitar D., “Subgroups of $HNN$ groups and groups with one defining relation”, Canad. J. Math., 23 (1971), 627–643 | DOI | MR | Zbl

[12] Klassen V. P., “Structure of subgroups with an identity in groups with a small degree of overlap of defining words”, Math. Notes, 24:3 (1978), 665–669 | DOI | MR | Zbl

[13] Ol'shanskiĭ A. Yu., “The SQ-universality of hyperbolic groups”, Sbornik: Mathematics, 186:8 (1995), 1199–1211 | DOI | MR | Zbl

[14] Magnus W., Karrass A., Solitar D., Combinatorial group theory: Presentations of groups in terms of generators and relations, Dover Publications, Inc., New York, 1976 | MR | MR | Zbl

[15] Coxeter H. S. M., Moser W. O. J., Generators and Relations for Discrete Groups, Springer, Berlin, 1972 | MR | MR | Zbl