On normalizers in some Coxeter groups
Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 113-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finitely generated Coxeter group with presentation $$G= a_1,\ldots, a_n;(a_ia_j)^{m_{ij}}=1, \, i,j =\overline{1,n} >,$$ where $m_{ij}$ — are the elements of the symmetric Coxeter matrix: $\forall i,j \in\overline{1,n},\, m_{ii}=1,\,m_{ij} \geq$ $ \geq2, \, i\ne j$. If $m_{ij}\geq3$ $(m_{ij}>3)$, $i\ne j$, then $G$ is a Coxeter group of large (extra-large) type. These groups introduced by K. Appel and P. Schupp. If the group $G$ corresponds to a finite tree-graph $\Gamma$ such that if the vertices of some edge $e$ of the graph $\Gamma$ correspond to generators $a_i, a_j$, then the edge $e$ corresponds to the ratio of the species $(a_ia_j)^{m_{ij}}=1$, then $G$ is a Coxeter group with a tree-structure. Coxeter groups with a tree-structure introduced by V. N. Bezverkhnii, algorithmic problems in them was considered by V. N. Bezverkhnii and O. V. Inchenko. The group $G$ can be represented as tree product 2-generated of Coxeter groups, amalgamated by cyclic subgroups. Thus from the graph $\Gamma$ of $G$ will move to the graph $\overline{\Gamma}$ in the following way: the vertices of the graph $\overline{\Gamma}$ we will put in line Coxeter group on two generators $$G_{ij} = , a_j; a_i^2=a_j^2=1,(a_ia_j)^{m_{ij}}=1>$$ and $$G_{jk} = , a_k; a_j^2=a_k^2=1,(a_ja_k)^{m_{jk}}=1>,$$ to every edge $\overline{e}$ joining the vertices corresponding to $G_{ij}$ and $G_{jk}$ is a cyclic subgroup $$;a_j^2=1>.$$ In this paper we prove the following theorem: normalizer of finitely generated subgroup of Coxeter group with tree-structure $$\overline{G}=G_{ij}\ast_{; \ a_j^2>}G_{jk},$$ $$G_{ij} = , a_j; a_i^2=a_j^2=1,(a_ia_j)^{m_{ij}}=1>,$$ $$G_{jk} = , a_k; a_j^2=a_k^2=1,(a_ja_k)^{m_{jk}}=1>$$ finitely generated and exist algorithm for generating. Bibliography: 18 titles.
Keywords: Coxeter group, tree-structure, normalizer, amalgamated product.
@article{CHEB_2016_17_2_a5,
     author = {I. V. Dobrynina},
     title = {On  normalizers in some {Coxeter} groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {113--127},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a5/}
}
TY  - JOUR
AU  - I. V. Dobrynina
TI  - On  normalizers in some Coxeter groups
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 113
EP  - 127
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a5/
LA  - ru
ID  - CHEB_2016_17_2_a5
ER  - 
%0 Journal Article
%A I. V. Dobrynina
%T On  normalizers in some Coxeter groups
%J Čebyševskij sbornik
%D 2016
%P 113-127
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a5/
%G ru
%F CHEB_2016_17_2_a5
I. V. Dobrynina. On  normalizers in some Coxeter groups. Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 113-127. http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a5/

[1] Bezverhnii V. N., Dobrynina I. V., “On freedom problem in Coxeter groups with tree-structure”, Izvestija TulGU. Estestven nauki, 2014, no. 1-1, 5–13

[2] Coxeter H. S. M., “Discrete groups generated by reflections”, Ann. Math., 35 (1934), 588–621 | DOI | MR

[3] Appel K., Schupp P., “Artins groups and infnite Coxter groups”, Ivent. Math., 72 (1983), 201–220 | DOI | MR | Zbl

[4] Lysenok I. G., “On some algorithmic properties of hyperbolic groups”, Math. USSR-Izv., 35:1 (1990), 145–163 | DOI | MR | Zbl | Zbl

[5] Bezverhnii V. N., Dobrynina I. V., “A solution of the power conjugacy problem for words in the Coxeter groups of extra large type”, Diskr. Mat., 20:3 (2008), 101–110 | DOI | Zbl

[6] Bezverhnii V. N., Dobrynina I. V., “Solution of the conjugacy problem for words in Coxeter groups of large type”, Chebyshevskii Sb., 4:1 (2003), 10–33

[7] Bezverhnii V. N., Dobrynina I. V., “Solution of the generalized conjugacy problem for words in Coxeter groups of large type”, Diskr. Mat., 17:3 (2005), 123–145 | DOI | Zbl

[8] Bezverkhnii V. N., Inchenko O. V., “Conjugacy problem of subgroups in finitely generated Coxeter groups with tree structure”, Chebyshevskii Sb., 11:3 (2010), 32–56 | Zbl

[9] Bezverhnii V. N., Dobrynina I. V., “Normalizers of Some Classes of Subgroups in Braid Groups”, Mat. Zametki, 74:1 (2003), 19–31 | DOI | MR | Zbl

[10] Bezverkhnii V. N., “Solution of the occurrence problem in some classes of groups with one defining relation”, Algorithmic problems of theory of groups and semigroups, 1986, 3–21

[11] Bezverkhnii V. N., “The occurrence problem for a class of groups”, Questions of theory of groups and semigroups, 1972, 3–86

[12] Bezverkhnii V. N., “On the intersection subgroups $HNN$-groups”, Fundam. Prikl. Mat., 4:1 (1998), 199–222 | MR

[13] Bezverkhnii V. N., Inchenko O. V., “The centralizer of elements of finite order of a finitely generated Coxeter group with a tree structure”, Chebyshevskii Sb., 9:1 (2008), 17–27 | MR

[14] Bezverkhnii V. N., Rollov E. V., “On subgroups of free products of groups”, Modern algebra, 1 (1974), 16–31

[15] Bezverkhnyaya I. S., “On root closure of subgroups of amalgamated product of groups”, Algorithmic problems of theory of groups and semigroups, 1983, 81–112

[16] Inchenko O. V., “About the problem of intersection of the adjacency classes of finitely generated subgroups of Coxeter's group with tree structure”, Chebyshevskii Sb., 17:2 (2016), 146–161

[17] Lindon P., Shupp P., Combinatory theory of groups, World, M., 1980 | MR

[18] Bezverkhnyaya I. S., “On conjugacy of finite sets of subgroups in free product of groups”, Algorithmic problems of theory of groups and semigroups, 1981, 102–116