Geometrization of the generalized Fibonacci numeration system with applications to number theory
Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 88-112

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized Fibonacci numbers $ \left \{F ^ {(g)} i \right \}$ are defined by the recurrence relation $$ F ^ {(g)} _ {i + 2} = g F ^ {(g)} _ {i + 1} + F ^ {(g)} _ i $$ with the initial conditions $ F ^ {(g)} _ 0 = 1 $, $ F ^ {(g)} _ 1 = g $. These numbers generater representations of natural numbers as a greedy expansions $$ n = \sum_ {i = 0} ^ {k} \varepsilon_i (n) F ^ {(g)} _ i, $$ with natural conditions on $ \varepsilon_i (n) $. In particular, when $ g = 1 $ we obtain the well-known Fibonacci numeration system. The expansions obtained by $ g> 1 $ are called representations of natural numbers in generalized Fibonacci numeration systems. This paper is devoted to studying the sets $ \mathbb {F} ^ {(g)} \left (\varepsilon_0, \ldots, \varepsilon_ {l} \right) $, consisting of natural numbers with a fixed end of their representation in the generalized Fibonacci numeration system. The main result is a following geometrization theorem that describe the sets $ \mathbb {F} ^ {(g)} \left (\varepsilon_0, \ldots, \varepsilon_ {l} \right) $ in terms of the fractional parts of the form $ \left \{n \tau_g \right \} $, $ \tau_g = \frac {\sqrt {g ^ 2 +4} -g} {2} $. More precisely, for any admissible ending $ \left (\varepsilon_0, \ldots, \varepsilon_ {l} \right) $ there exist effectively computable $ a, b \in \mathbb {Z} $ such that $ n \in \mathbb {F} ^ {(g)} \left (\varepsilon_0, \ldots, \varepsilon_ {l} \right) $ if and only if the fractional part $ \left \{(n + 1) \tau_g \right \} $ belongs to the segment $ \left [\{-a \tau_g \}; \{- b \tau_g \} \right] $. Earlier, a similar theorem was proved by authors in the case of classical Fibonacci numeration system. As an application some analogues of classic number-theoretic problems for the sets $ \mathbb {F} ^ {(g)} \left (\varepsilon_0, \ldots, \varepsilon_ {l} \right) $ are considered. In particular asymptotic formulaes for the quantity of numbers from considered sets belonging to a given arithmetic progression, for the number of primes from considered sets, for the number of representations of a natural number as a sum of a predetermined number of summands from considered sets, and for the number of solutions of Lagrange, Goldbach and Hua Loken problem in the numbers of from considered sets are established. Bibliography: 33 titles.
Keywords: generalized Fibonacci numeration system, geometrization theorem, distribution in progressions, Goldbach type problem.
@article{CHEB_2016_17_2_a4,
     author = {E. P. Davlet'yarova and A. A. Zhukova and A. V. Shutov},
     title = {Geometrization of the generalized {Fibonacci} numeration system with applications to number theory},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {88--112},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a4/}
}
TY  - JOUR
AU  - E. P. Davlet'yarova
AU  - A. A. Zhukova
AU  - A. V. Shutov
TI  - Geometrization of the generalized Fibonacci numeration system with applications to number theory
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 88
EP  - 112
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a4/
LA  - ru
ID  - CHEB_2016_17_2_a4
ER  - 
%0 Journal Article
%A E. P. Davlet'yarova
%A A. A. Zhukova
%A A. V. Shutov
%T Geometrization of the generalized Fibonacci numeration system with applications to number theory
%J Čebyševskij sbornik
%D 2016
%P 88-112
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a4/
%G ru
%F CHEB_2016_17_2_a4
E. P. Davlet'yarova; A. A. Zhukova; A. V. Shutov. Geometrization of the generalized Fibonacci numeration system with applications to number theory. Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 88-112. http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a4/