Geometrization of the generalized Fibonacci numeration system with applications to number theory
Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 88-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized Fibonacci numbers $ \left \{F ^ {(g)} i \right \}$ are defined by the recurrence relation $$ F ^ {(g)} _ {i + 2} = g F ^ {(g)} _ {i + 1} + F ^ {(g)} _ i $$ with the initial conditions $ F ^ {(g)} _ 0 = 1 $, $ F ^ {(g)} _ 1 = g $. These numbers generater representations of natural numbers as a greedy expansions $$ n = \sum_ {i = 0} ^ {k} \varepsilon_i (n) F ^ {(g)} _ i, $$ with natural conditions on $ \varepsilon_i (n) $. In particular, when $ g = 1 $ we obtain the well-known Fibonacci numeration system. The expansions obtained by $ g> 1 $ are called representations of natural numbers in generalized Fibonacci numeration systems. This paper is devoted to studying the sets $ \mathbb {F} ^ {(g)} \left (\varepsilon_0, \ldots, \varepsilon_ {l} \right) $, consisting of natural numbers with a fixed end of their representation in the generalized Fibonacci numeration system. The main result is a following geometrization theorem that describe the sets $ \mathbb {F} ^ {(g)} \left (\varepsilon_0, \ldots, \varepsilon_ {l} \right) $ in terms of the fractional parts of the form $ \left \{n \tau_g \right \} $, $ \tau_g = \frac {\sqrt {g ^ 2 +4} -g} {2} $. More precisely, for any admissible ending $ \left (\varepsilon_0, \ldots, \varepsilon_ {l} \right) $ there exist effectively computable $ a, b \in \mathbb {Z} $ such that $ n \in \mathbb {F} ^ {(g)} \left (\varepsilon_0, \ldots, \varepsilon_ {l} \right) $ if and only if the fractional part $ \left \{(n + 1) \tau_g \right \} $ belongs to the segment $ \left [\{-a \tau_g \}; \{- b \tau_g \} \right] $. Earlier, a similar theorem was proved by authors in the case of classical Fibonacci numeration system. As an application some analogues of classic number-theoretic problems for the sets $ \mathbb {F} ^ {(g)} \left (\varepsilon_0, \ldots, \varepsilon_ {l} \right) $ are considered. In particular asymptotic formulaes for the quantity of numbers from considered sets belonging to a given arithmetic progression, for the number of primes from considered sets, for the number of representations of a natural number as a sum of a predetermined number of summands from considered sets, and for the number of solutions of Lagrange, Goldbach and Hua Loken problem in the numbers of from considered sets are established. Bibliography: 33 titles.
Keywords: generalized Fibonacci numeration system, geometrization theorem, distribution in progressions, Goldbach type problem.
@article{CHEB_2016_17_2_a4,
     author = {E. P. Davlet'yarova and A. A. Zhukova and A. V. Shutov},
     title = {Geometrization of the generalized {Fibonacci} numeration system with applications to number theory},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {88--112},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a4/}
}
TY  - JOUR
AU  - E. P. Davlet'yarova
AU  - A. A. Zhukova
AU  - A. V. Shutov
TI  - Geometrization of the generalized Fibonacci numeration system with applications to number theory
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 88
EP  - 112
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a4/
LA  - ru
ID  - CHEB_2016_17_2_a4
ER  - 
%0 Journal Article
%A E. P. Davlet'yarova
%A A. A. Zhukova
%A A. V. Shutov
%T Geometrization of the generalized Fibonacci numeration system with applications to number theory
%J Čebyševskij sbornik
%D 2016
%P 88-112
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a4/
%G ru
%F CHEB_2016_17_2_a4
E. P. Davlet'yarova; A. A. Zhukova; A. V. Shutov. Geometrization of the generalized Fibonacci numeration system with applications to number theory. Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 88-112. http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a4/

[1] Hecke E., “Eber Analytische Funktionen und die Verteilung van Zahlen mod Eins”, Math. Sem. Hamburg Univ., 1921, no. 5, 54–76

[2] Knuth D. E., “Fibonacci multiplication”, Appl. Math. Lett., 1 (1988), 57–60 | DOI | MR | Zbl

[3] Pinner C. G., “On Sums of Fractional Parts $\{n\alpha+\gamma\}$”, J. Number Theory, 65 (1997), 48–73 | DOI | MR | Zbl

[4] Van Ravenstein T., “The three gap theorem (Steinhaus conjecture)”, J. Austral. Math. Soc. Ser. A, 45 (1988), 360–370 | DOI | MR | Zbl

[5] Shutov A. V., “New estimates in the Hecke-Kesten problem”, Analytic and Probabilistic Methods in Number Theory, eds. A. Laurincikas, E. Manstavicius, TEV, Vilnius, 2007, 190–203 | MR | Zbl

[6] Weyl H., “Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene”, Rendicontidel Circolo Mathematico di Palermo, 1910, no. 30, 377–407 | DOI | Zbl

[7] Vinogradov I. M., “Novyj metod v analiticheskoj teorii chisel”, Trudy MIAN, 10, 1937, 5–122 (Russian)

[8] Graham R., Knuth D., Patashnik O., Concrete Mathematics, Addison-Wesley, 1994 | MR | Zbl

[9] Gricenko S. A., Mot'kina N. N., “Zadacha Hua-Lokena s prostymi chislami special'nogo vida”, DAN respubliki Tadzhikistan, 52:7 (2009), 497–500 (Russian)

[10] Gricenko S. A., Mot'kina N. N., “O nekotoryh additivnyh zadachah teorii chisel”, Nauchnye vedomosti BelGU. Serija Matematika. Fizika, 5(76):18 (2010), 83–87 (Russian)

[11] Gricenko S. A., Mot'kina N. N., “Ob odnom variante ternarnoj problemy Gol'dbaha”, DAN respubliki Tadzhikistan, 52:6 (2009), 413–417 (Russian)

[12] Davletj'yarova E. P., Zhukova A. A., Shutov A. V., St. Petersburg Mathematical Journal, 25:6 (2014), 893–907 | DOI | MR

[13] Zhuravlev V. G., St. Petersburg Mathematical Journal, 19:3 (2008), 431–454 | DOI | MR | Zbl

[14] Zhuravlev V. G., Izvestiya: Mathematics, 71:2 (2007), 307–340 | DOI | DOI | MR | Zbl

[15] Zhuravlev V. G., Journal of Mathematical Sciences, 143:3 (2007), 3108–3123 | DOI | MR | Zbl

[16] Zhuravlev V. G., Journal of Mathematical Sciences, 150:3 (2008), 2084–2095 | DOI | MR

[17] Zhuravlev V. G., St. Petersburg Mathematical Journal, 20:3 (2009), 339–360 | DOI | MR | Zbl

[18] Kuipers L., Niederreiter G., Uniform Distribution of Sequences, Wiley, New York, 1974 | MR | Zbl

[19] Krasil'shhikov V. V., Shutov A. V., “Nekotorye voprosy vlozhenija reshetok v odnomernye kvaziperiodicheskie razbienija”, Vestnik SamGU. Estestvennonauchnaja serija, 2007, no. 7(57), 84–91 (Russian)

[20] Krasil'shhikov V. V., Shutov A. V., Russian Mathematics, 53:7 (2009), 1–6 | DOI | MR

[21] Matijasevich Ju. V., “Svjaz' sistem uravnenij v slovah i dlinah s 10-j problemoj Gilberta”, Zapiski nauchnyh seminarov LOMI, 8, 1968, 132–144 (Russian) | Zbl

[22] Matijasevich Ju. V., “Dve redukcii 10-j problemy Gilberta”, Zapiski nauchnyh seminarov LOMI, 8, 1968, 145–158 (Russian) | Zbl

[23] Shvagireva I. K., “Binarnye additivnye zadachi nad $\circ$-progessijami Fibonachchi”, Algebra i teorija chisel: sovremennye problemy i prilozhenija, Materialy VII mezhdunarodnoj konferencii, posvjashhennoj pamjati professora Anatolija Alekseevicha Karatsuby (Tula, 11–16 maja 2010 goda), TGPU, Tula, 2010, 198–200 (Russian)

[24] Shutov A. V., “Arifmetika i geometrija odnomernyh kvazireshetok”, Chebyshevskii sbornik, 11 (2010), 255–262 (Russian) | MR | Zbl

[25] Shutov A. V., Journal of Mathematical Sciences (New York), 182:4 (2012), 576–585 | DOI | MR | Zbl

[26] Shutov A. V., “O raspredelenii drobnyh dolej”, Chebyshevskii sbornik, 5:3 (2004), 112–121 (Russian) | MR

[27] Shutov A. V., “O raspredelenii drobnyh dolej II”, Issledovanija po algebre, teorii chisel, funkcional'nomu analizu i smezhnym voprosam, 2005, no. 3, 146–158 (Russian)

[28] Shutov A. V., “Ob odnoj additivnoj zadache s chislami special'nogo vida”, Matematika, informatika i metodika ih prepodavanija, Materialy Vserossijskoj konferencii, posvjashhennoj 110-letiju matematicheskogo fakul'teta, MPGU, M., 2011, 102–104 (Russian)

[29] Shutov A. V., “Ob odnoj additivnoj zadache s drobnymi doljami”, Nauchnye vedomosti BelGU. Serija Matematika. Fizika, 5(148):30 (2013), 111–120 (Russian)

[30] Shutov A. V., “Perenormirovki vrashhenij okruzhnosti”, Chebyshevskii sbornik, 5:4 (2004), 125–143 (Russian) | Zbl

[31] Shutov A. V., “Posledovatel'nosti Sturma: grafy Rauzy i forcing”, Chebyshevskii sbornik, 8:2 (2007), 128–139 (Russian) | MR

[32] Shutov A. V., Journal of Mathematical Sciences, 133:6 (2006), 1765–1771 | DOI | MR | Zbl

[33] Shutov A. V., “Sistemy schislenija i mnozhestva ogranichennogo ostatka”, Chebyshevskii sbornik, 7:3 (2006), 110–128 (Russian) | MR | Zbl