Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_2_a3, author = {I. V. Goryuchkina}, title = {Classes of finite order formal solutions of an ordinary differential equation}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {64--87}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a3/} }
I. V. Goryuchkina. Classes of finite order formal solutions of an ordinary differential equation. Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 64-87. http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a3/
[1] Erdélyi A., Asymptotic expansions, Dover, New York, 1955, 108 pp.
[2] Bruno A. D., “Asymptotic behaviour and expansions of solutions of an ordinary differential equation”, Uspekhi Mat. Nauk, 59:3 (2004), 31–80 | DOI | MR | Zbl
[3] Bruno A. D., Goryuchkina I. V., “Asymptotic expansions of the solutions of the sixth Painlevé equation”, Trans. Moscow Math. Soc., 2010, 1–104 | MR
[4] Bruno A. D., Petrovich V. Yu., “Singularities of solutions to the first Painleve equation”, Keldysh Institute preprints, 2004, 075, 17 pp.
[5] Bruno A. D., Gridnev A. V., “Power and exponential expansions of solutions to the third Painlevé equation”, Keldysh Institute preprints, 2003, 051, 19 pp. | Zbl
[6] Bruno A. D., Gridnev A. V., “Nonpower expansions of solutions to the third Painleve equation”, Keldysh Institute preprints, 2010, 010, 18 pp.
[7] Bruno A. D., “Power Geometry as a new calculus”, Analysis and Applications — ISAAC 2001, eds. H. G. W. Begehr, R. P. Gilbert, M. W. Wong, Kluwer Academic Publishers, Dordrecht–Boston–London, 2003, 51–71 | DOI | MR | Zbl
[8] Bruno A. D., Parusnikova A. V., “Local expansions of solutions to the Fifth Painlevé equation”, Doklady Math., 438:4 (2011), 348–352 | DOI | MR | Zbl
[9] Bruno A. D., “Exponential expansions of solutions to an ordinary differential equation”, Doklady Math., 85:2 (2012), 259–264 | DOI | MR | Zbl
[10] Bruno A. D., “Elements of Nonlinear Analisys”, Mathematical Forum, Ser. “Itogi nauki. Yug Rossii”, Yuzh. Math. Inst. Vladikavkaz Scien. Center, 2015, 13–33
[11] Shabat B. V., Introduction to complex analysis, v. 1, Nauka, M., 2002 (in Russian)
[12] Bryuno A. D., Shadrina T. V., “An axisymmetric boundary layer on a needle”, Trans. Moscow Math. Soc., 2007, 201–259 | DOI | MR | Zbl
[13] Costin O., Asymptotics and Borel Summability, CRC Press, London, 2009 | MR | Zbl
[14] Van der Hoeven J., Transseries and Real Differential Algebra, Lecture Notes in Mathematics, 1888, Springer, New York, 2006 | MR | Zbl
[15] Aschenbrenner M., Van den Dries L., Van der Hoeven J., Asymptotic Differential Algebra and Model Theory of Transseries, 2015, arXiv: 1509.02588
[16] Edgar G. A., “Transseries for beginners”, Real Analysis Exchange, 35 (2010), 253–310 | MR | Zbl
[17] Goryuchkina I. V., “Exact solution of the sixth Painlevé equation and exotic asymptotic expansion”, Doklady Mathematics, 87:3 (2013), 314–317 | DOI | DOI | MR | Zbl
[18] Kudryavtsev V. A., “General formula for the n-th order derivative of some function”, Matematicheskoye Prosveshenie, 1, ONTI, M.–L., 1934, 24–27 (in Russian)
[19] Grigor'ev D. Yu., Singer M. F., “Solving ordinary differential equations in terms of series with real exponents”, Trans. Amer. Math. Soc., 327:1 (1991), 329–351 | DOI | MR | Zbl
[20] Ramis J.-P., Séries divergentes et théories asymptotiques, Bull. Soc. Math. France, 121, Société mathématique de france, 1993 | MR
[21] Balser W., From divergent power series to analytic functions, Springer-Verlag, 1994 | MR | Zbl
[22] Sibuya Y., Linear Differential Equations in the Complex Domain: Problems of Analytic Continuation, Transl. Math. Monographs, 82, A.M.S., 1990 | MR | Zbl