Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_2_a2, author = {M. R. Gabdullin}, title = {On squares in special sets of finite fields}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {56--63}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a2/} }
M. R. Gabdullin. On squares in special sets of finite fields. Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 56-63. http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a2/
[1] Banks W. D., Conflitti A., Shparlinski I. E., “Character sums over integers with restricted $g$-ary digits”, Illinois J. Math., 46:3 (2002), 819–836 | MR | Zbl
[2] Banks W. D., Shparlinski I. E., “Arithmetic properties of numbers with restricted digits”, Acta Arith., 112 (2004), 313–332 | DOI | MR | Zbl
[3] Col S., Propriétés multiplicatives d'entiers soumis à des contraintes digitales, Thèse de doctorat de mathématiques de l'Université Henri Poincaré-Nancy. Vol. 1, 2006
[4] Col S., “Diviseurs des nombres ellipséphiques”, Periodica Mathematica Hungarica, 58:1 (2009), 1–23 | DOI | MR | Zbl
[5] Coquet J., “On the uniform distribution modulo one of some subsequences of polynomial sequences”, J. Number Theory, 10:3 (1978), 291–296 | DOI | MR | Zbl
[6] Coquet J., “On the uniform distribution modulo one of some subsequences of polynomial sequences”, J. Number Theory, 12:2 (1980), 244–250 | DOI | MR | Zbl
[7] Coquet J., “Graphes connexes, représentation de entiers et équirépartition”, J. Number Theory, 16:3 (1983), 363–375 | DOI | MR | Zbl
[8] Dartyge C., Mauduit C., “Nombres presque premiers dont l`écriture en base $r$ ne comporte pas certain chiffres”, Journal of Number Theory, 81 (2000), 270–291 | DOI | MR | Zbl
[9] Dartyge C., Mauduit C., “Ensembles de densité nulle contenant des entiers possédant au plus deux facteurs premiers”, Journal of Number Theory, 91 (2001), 230–255 | DOI | MR | Zbl
[10] Drmota M., Mauduit C., “Weyl sums over integers with affine digits restriction”, Journal of Number Theory, 30 (2010), 2404–2427 | DOI | MR
[11] Erdős P., Mauduit C., Sárközy A., “On the arithmetic properties of integers with missing digits I: Distribution in residue classes”, Journal of Number Theory, 70:2 (1998), 99–120 | DOI | MR | Zbl
[12] Konyagin S. V., Mauduit C., Sárközy A., “On the number of prime factors of integers characterized by digits properties”, Period. Math. Hung., 40 (2000), 37–52 | DOI | MR | Zbl
[13] Dartyge C., Sárközy A., “The sum of digits function in the finite field”, Proc. Amer. Math. Soc., 141:12 (2013), 4119–4124 | DOI | MR | Zbl
[14] Dartyge C., Mauduit C., Sárközy A., “Polynomial values and generators with missing digits in finite fields”, Functiones et Approximatio, 52:1 (2015), 65–74 | DOI | MR | Zbl
[15] Gabdullin M. R., On squares in subsets of finite fields with restrictions on coefficients of basis decomposition (Russian)
[16] Dietmann R., Elsholtz C., Shparlinski I. E., Prescribing the binary digits of squarefree numbers and quadratic residues, arXiv: 1601.04754v1
[17] Wan D., “Generators and irreducible polynomials over finite fields”, Math. Comp., 66 (1997), 1195–1212 | DOI | MR | Zbl
[18] Winterhof A., “Characters sums, primitive elements, and powers in finite fields”, Journal of Number Theory, 91 (2001), 153–161 | DOI | MR