On squares in special sets of finite fields
Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 56-63

Voir la notice de l'article provenant de la source Math-Net.Ru

A large part of number theory deals with arithmetic properties of numbers with “missing digits” (that is numbers which digits in a number system with a fixed base belong to a given set). The present paper explores the analog of such a similar problem in the finite field. We consider the linear vector space formed by the elements of the finite field $\mathbb{F}_q$ with $q=p^r$ over $\mathbb{F}_p$. Let $\{a_1,\ldots,a_r\}$ be a basis of this space. Then every element $x\in\mathbb{F}_q$ has a unique representation in the form $\sum_{j=1}^r c_ja_j$ with $c_j\in\mathbb{F}_p$; the coefficients $c_j$ may be called “digits”. Let us fix the set $\mathcal{D}\subset\mathbb{F}_p$ and let $W_{\mathcal{D}}$ be the set of all elements $x\in\mathbb{F}_q$ such that all its digits belong to the set $\mathcal{D}$. In this connection the elements of $\mathbb{F}_p\setminus\mathcal{D}$ may be called “missing digits”. In a recent paper of C.Dartyge, C.Mauduit, A.Sárközy it has been shown that if the set $\mathcal{D}$ is quite large then there are squares in the set $W_{\mathcal{D}}$. In this paper more common problem is considered. Let us fix subsets $D_1,\ldots,D_r\subset\mathbb{F}_p$ and consider the set $W=W(D_1,\ldots,D_r)$ of all elements $x\in\mathbb{F}_q$ such that $c_j\in D_j$ for all $1\leq j \leq r$. We prove an estimate for the number of squares in the set $W$, which implies the following assertions: if $\prod\limits_{i=1}^r|D_i| \geq (2r-1)^rp^{r(1/2+\varepsilon)}$ for some $\varepsilon>0$, then the asymptotic formula $|W\cap Q|=$ $=|W|\left(\frac12+O(p^{-\varepsilon/2})\right)$ is valid; if $\prod\limits_{i=1}^r |D_i|\geq 8(2r-1)^rp^{r/2}$, then there exist nonzero squares in the set $W$. Bibliography: 18 titles.
Keywords: finite fields, squares, character sums.
@article{CHEB_2016_17_2_a2,
     author = {M. R. Gabdullin},
     title = {On squares in special sets of finite fields},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {56--63},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a2/}
}
TY  - JOUR
AU  - M. R. Gabdullin
TI  - On squares in special sets of finite fields
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 56
EP  - 63
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a2/
LA  - ru
ID  - CHEB_2016_17_2_a2
ER  - 
%0 Journal Article
%A M. R. Gabdullin
%T On squares in special sets of finite fields
%J Čebyševskij sbornik
%D 2016
%P 56-63
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a2/
%G ru
%F CHEB_2016_17_2_a2
M. R. Gabdullin. On squares in special sets of finite fields. Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 56-63. http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a2/