Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_2_a10, author = {O. G. Rovenska and O. A. Novikov}, title = {Approximation of analytic periodic functions by linear means of {Fourier} series}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {170--183}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a10/} }
TY - JOUR AU - O. G. Rovenska AU - O. A. Novikov TI - Approximation of analytic periodic functions by linear means of Fourier series JO - Čebyševskij sbornik PY - 2016 SP - 170 EP - 183 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a10/ LA - ru ID - CHEB_2016_17_2_a10 ER -
O. G. Rovenska; O. A. Novikov. Approximation of analytic periodic functions by linear means of Fourier series. Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 170-183. http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a10/
[1] Stepanec A. I., Methods of approximation theory, v. 1, Inst. Mat. NAN Ukr., Kiev, 2002, 426 pp. (In Russian)
[2] Akopyan R. R., “Best approximation of the differentiation operator on the class of functions analytic in a strip”, Tr. Inst. Mat. i Meh. UrO RAN, 20, no. 1, 2014, 9–16 (In Russian) | MR | Zbl
[3] Shamoyan R., Kurilenko S., “Some remarks on distances in spaces of analytic functions in bounded domains with $C^2$ boundary and admissible domains”, Chebyshevskii Sb., 15:3 (2014), 115—130 | MR
[4] Nikol'skiy S. M., “Approximation of functions by trigonometric polynomials in the mean”, Izv. Acad. Nauk SSSR, Ser. Mat., 10:3 (1946), 207–256 (In Russian) | MR | Zbl
[5] Stechkin S. B., “Estimation of the remainder of Fourier series for the differentiable functions”, Tr. Mat. Inst. Acad. Nauk SSSR, 145 (1980), 126–151 (In Russian) | MR | Zbl
[6] Stepanec A. I., “Approximation of Poussin integrals of continuous functions by Fourier sums”, Dokl. RAN, 373:2 (2000), 171–173 (In Russian) | MR | Zbl
[7] Stepanec A. I., “Solution of the Kolmogorov–Nikol'skii problem for the Poisson integrals of continuous functions”, Mat. Sb., 192:1 (2001), 113–138 (In Russian) | DOI | MR | Zbl
[8] Rukasov V. I., Chaichenko S. O., “Approximation of classes of Poisson integrals by de la Vallee Poussin sums”, Ukrain. Mat. J., 54:12 (2002), 1653–1668 (In Russian) | MR | Zbl
[9] Rukasov V. I., Novikov O. A., “Approximation of analytic functions by de la Vallee Poussin sums”, Trudu inst. mat. NAN Ukr., 20 (1998), 228–241 (In Russian) | Zbl
[10] Serdyuk A. S., “Approximation of Poisson integrals by de la Vallee Poussin sums”, Ukr. Mat. J., 56:1 (2004), 97–107 (In Russian) | MR | Zbl
[11] Rukasov V. I., Novikov O. A., Rovenska O. G., “Integral representations of deviations of means of Fourier sums on classes $C_{\beta,\infty}^{\alpha}$”, Vestnik Slavyanskogo Gos. Ped. Univ., 1:3 (2008), 33–41 (In Russian)
[12] Rovenska O. G., Novikov O. A., “Approximation of Poisson integrals by repeated de la Vallee Poussin sums”, Nelinejnue kolebaniya, 13:1 (2010), 96–99 (In Russian) | MR
[13] Novikov O. A., Styopkin A. V., Volik S. V., Vagner G. V., “Approximation of Poussin integrals in uniform metric”, Sb. nauch. trudov fiziko-matematicheskogo faculteta Donbasskogo Gos. Prd. Univ., 2016, no. 6, 26–34 (In Russian) | MR
[14] Novikov O. A., Rovenska O. G., “Approximation of periodic function of high smoothness by right-angled Fourier sums”, Karpatskie mat. publikacii, 5:1 (2013), 111–118 (in Ukrainian) | Zbl
[15] Novikov O. A., Rovenska O. G., “Approximation of periodic function of high smoothness by right-angled of Fourier series”, Naucnue vedomosti Belgorodskogo Gos. Univ. Ser. Mat. Fiz., 2013, no. 5(148), 88–97 (In Russian)
[16] Rovenska O. G., Novikov O. A., “Approximation of periodic functions of hight smoothness by right-angled linear means of Fourier series”, Komp'yuternue issledovaniya i modelirovanie, 4:3 (2012), 521–529 (In Russian)