Approximation of analytic periodic functions by linear means of Fourier series
Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 170-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work concerns the questions of approximation of periodic differentiable functions of high smoothness by repeated arithmetic means of Fourier sums. One of the classifications of periodic functions nowadays is the classification suggested by A. Stepanets which is based on the concept of $(\psi,\beta)$-differentiation. The given classification allows to distinguish all classes of summable periodic functions from the functions where the Fourier series can deviate to infinitely differentiable functions including analytical and entire ones. When choosing the parameters properly, classes of $(\psi,\beta)$-differentiable functions exactly coincide with the well-known classes of Vail differentiable functions, Sobolev classes $W^l_p$ and classes of convolutions with integral kernels. De la Vallee Poussin sums and their special cases (Fourier sums and Fejer sums) were extensively studied for many decades by many prominent experts in the theory of functions. At present, the large amount of factual material is accumulated in numerous publications. One of the most important directions in this field is the investigation of approximation properties of these sums for various classes of functions. The aim of the present paper is to systematize the known results related to the approximation properties of de la Vallee Poussin sums on classes of Poisson integrals and to present new facts obtained for their generalizations. In certain cases asymptotic equalities are found for upper bounds of deviations in the uniform metric of the repeated de la Vallee Poussin sums on the classes $C^\psi_{\beta,\infty}$ and $C^\psi_\beta H_\omega$ which are generated by multiplicators $\psi(k)$ and shifts on argument $\beta$ provided that sequences $\psi(k)$ which define the specified classes tend to zero with the rate of geometrical progression. In doing so classes $C^\psi_{\beta,\infty}$ and $C^\psi_\beta H_\omega$ consist of analytic functions which can be regularly extended in the corresponding strip. We introduce generalized de la Vallee Poussin sums and study their approximation properties for the classes of analytic periodic functions. We obtain asymptotic equalities for upper bounds of deviations of the repeated de la Vallee Poussin sums on classes of Poisson integrals. Under certain conditions, these equalities guarantee the solvability of the Kolmogorov–Nikol’skiy problem for the repeated de la Vallee Poussin sums and classes of Poisson integrals. We indicate conditions under which the repeated sums guarantee a better order of approximation than ordinary de la Vallee Poussin sums. Bibliography: 16 titles.
Keywords: Fourier series, de la Valee Poussin method, asymptotic formula.
@article{CHEB_2016_17_2_a10,
     author = {O. G. Rovenska and O. A. Novikov},
     title = {Approximation of analytic periodic functions by linear means of {Fourier} series},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {170--183},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a10/}
}
TY  - JOUR
AU  - O. G. Rovenska
AU  - O. A. Novikov
TI  - Approximation of analytic periodic functions by linear means of Fourier series
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 170
EP  - 183
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a10/
LA  - ru
ID  - CHEB_2016_17_2_a10
ER  - 
%0 Journal Article
%A O. G. Rovenska
%A O. A. Novikov
%T Approximation of analytic periodic functions by linear means of Fourier series
%J Čebyševskij sbornik
%D 2016
%P 170-183
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a10/
%G ru
%F CHEB_2016_17_2_a10
O. G. Rovenska; O. A. Novikov. Approximation of analytic periodic functions by linear means of Fourier series. Čebyševskij sbornik, Tome 17 (2016) no. 2, pp. 170-183. http://geodesic.mathdoc.fr/item/CHEB_2016_17_2_a10/

[1] Stepanec A. I., Methods of approximation theory, v. 1, Inst. Mat. NAN Ukr., Kiev, 2002, 426 pp. (In Russian)

[2] Akopyan R. R., “Best approximation of the differentiation operator on the class of functions analytic in a strip”, Tr. Inst. Mat. i Meh. UrO RAN, 20, no. 1, 2014, 9–16 (In Russian) | MR | Zbl

[3] Shamoyan R., Kurilenko S., “Some remarks on distances in spaces of analytic functions in bounded domains with $C^2$ boundary and admissible domains”, Chebyshevskii Sb., 15:3 (2014), 115—130 | MR

[4] Nikol'skiy S. M., “Approximation of functions by trigonometric polynomials in the mean”, Izv. Acad. Nauk SSSR, Ser. Mat., 10:3 (1946), 207–256 (In Russian) | MR | Zbl

[5] Stechkin S. B., “Estimation of the remainder of Fourier series for the differentiable functions”, Tr. Mat. Inst. Acad. Nauk SSSR, 145 (1980), 126–151 (In Russian) | MR | Zbl

[6] Stepanec A. I., “Approximation of Poussin integrals of continuous functions by Fourier sums”, Dokl. RAN, 373:2 (2000), 171–173 (In Russian) | MR | Zbl

[7] Stepanec A. I., “Solution of the Kolmogorov–Nikol'skii problem for the Poisson integrals of continuous functions”, Mat. Sb., 192:1 (2001), 113–138 (In Russian) | DOI | MR | Zbl

[8] Rukasov V. I., Chaichenko S. O., “Approximation of classes of Poisson integrals by de la Vallee Poussin sums”, Ukrain. Mat. J., 54:12 (2002), 1653–1668 (In Russian) | MR | Zbl

[9] Rukasov V. I., Novikov O. A., “Approximation of analytic functions by de la Vallee Poussin sums”, Trudu inst. mat. NAN Ukr., 20 (1998), 228–241 (In Russian) | Zbl

[10] Serdyuk A. S., “Approximation of Poisson integrals by de la Vallee Poussin sums”, Ukr. Mat. J., 56:1 (2004), 97–107 (In Russian) | MR | Zbl

[11] Rukasov V. I., Novikov O. A., Rovenska O. G., “Integral representations of deviations of means of Fourier sums on classes $C_{\beta,\infty}^{\alpha}$”, Vestnik Slavyanskogo Gos. Ped. Univ., 1:3 (2008), 33–41 (In Russian)

[12] Rovenska O. G., Novikov O. A., “Approximation of Poisson integrals by repeated de la Vallee Poussin sums”, Nelinejnue kolebaniya, 13:1 (2010), 96–99 (In Russian) | MR

[13] Novikov O. A., Styopkin A. V., Volik S. V., Vagner G. V., “Approximation of Poussin integrals in uniform metric”, Sb. nauch. trudov fiziko-matematicheskogo faculteta Donbasskogo Gos. Prd. Univ., 2016, no. 6, 26–34 (In Russian) | MR

[14] Novikov O. A., Rovenska O. G., “Approximation of periodic function of high smoothness by right-angled Fourier sums”, Karpatskie mat. publikacii, 5:1 (2013), 111–118 (in Ukrainian) | Zbl

[15] Novikov O. A., Rovenska O. G., “Approximation of periodic function of high smoothness by right-angled of Fourier series”, Naucnue vedomosti Belgorodskogo Gos. Univ. Ser. Mat. Fiz., 2013, no. 5(148), 88–97 (In Russian)

[16] Rovenska O. G., Novikov O. A., “Approximation of periodic functions of hight smoothness by right-angled linear means of Fourier series”, Komp'yuternue issledovaniya i modelirovanie, 4:3 (2012), 521–529 (In Russian)