On algebraic integers and monic polynomials of second degree
Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 117-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the algebraic integers of second degree and reducible quadratic monic polynomials with integer coefficients. Let $Q\ge 4$ be an integer. Define $\Omega_n(Q,S)$ to be the number of algebraic integers of degree $n$ and height $\le Q$ belonging to $S\subseteq\mathbb{R}$. We improve the remainder term of the asymptotic formula for $\Omega_2(Q,I)$, where $I$ is an arbitrary interval. Denote by $\mathcal{R}(Q)$ the set of reducible monic polynomials of second degree with integer coefficients and height $\le Q$. We obtain the formula $$ \#\mathcal{R}(Q) = 2 \sum_{k=1}^Q \tau(k) + 2Q + \left[\sqrt{Q}\right] - 1, $$ where $\tau(k)$ is the number of divisors of $k$. Besides we show that the number of real algebraic integers of second degree and height $\le Q$ has the asymptotics $$ \Omega_2(Q,\mathbb{R}) = 8 Q^2 - \frac{16}{3}Q\sqrt{Q} - 4Q\ln Q + 8(1-\gamma) Q + O\!\left(\sqrt{Q}\right), $$ where $\gamma$ is the Euler constant. It is known that the density function of the distribution of algebraic integers of degree $n$ uniformly tends to the density function of algebraic numbers of degree $n-1$. We show that for $n=2$ the integral of their difference over the real line has nonzero limit as height of numbers tends to infinity. Bibliography: 17 titles.
Keywords: algebraic integers, distribution of algebraic integers, quadratic irrationalities, integral monic polynomials.
@article{CHEB_2016_17_1_a8,
     author = {D. V. Koleda},
     title = {On algebraic integers and monic polynomials of second degree},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {117--129},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a8/}
}
TY  - JOUR
AU  - D. V. Koleda
TI  - On algebraic integers and monic polynomials of second degree
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 117
EP  - 129
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a8/
LA  - ru
ID  - CHEB_2016_17_1_a8
ER  - 
%0 Journal Article
%A D. V. Koleda
%T On algebraic integers and monic polynomials of second degree
%J Čebyševskij sbornik
%D 2016
%P 117-129
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a8/
%G ru
%F CHEB_2016_17_1_a8
D. V. Koleda. On algebraic integers and monic polynomials of second degree. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 117-129. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a8/

[1] Barroero F., “Counting algebraic integers of fixed degree and bounded height”, Monatshefte für Mathematik, 175:1 (2014), 25–41 | DOI | MR | Zbl

[2] Brown H., Mahler K., “A generalization of Farey sequences: Some exploration via the computer”, J. Number Theory, 3:3 (1971), 364–370 | DOI | MR | Zbl

[3] Chandrasekharan K., Arithmetical functions, Die Grundlehren der mathematischen Wissenschaften, 167, Springer-Verlag, Berlin–Heidelberg, 1970 | MR | Zbl

[4] Chela R., “Reducible polynomials”, J. London Math. Soc., 38:1 (1963), 183–188 | DOI | MR | Zbl

[5] Chern S.-J., Vaaler J. D., “The distribution of values of Mahler's measure”, J. Reine Angew. Math., 540 (2001), 1–47 | DOI | MR | Zbl

[6] Cobeli C., Zaharescu A., “The Haros–Farey sequence at two hundred years”, Acta Univ. Apulensis Math. Inform., 5 (2003), 1–38 | MR | Zbl

[7] Davenport H., “On a principle of Lipschitz”, J. London Math. Soc., 26 (1951), 179–183 ; Corrigendum, J. London Math. Soc., 39 (1964), 580 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Hardy G. H., “On Dirichlet's divisor problem”, Proc. London Math. Soc. (2), 15 (1916), 1–25 | MR | Zbl

[9] Huxley M. N., “Exponential sums and lattice points, III”, Proc. London Math. Soc. (3), 87:3 (2003), 591–609 | DOI | MR | Zbl

[10] Koleda D. V., On the density function of the distribution of real algebraic numbers, 2014, arXiv: 1405.1627

[11] Koleda D. V., The distribution of algebraic integers of given degree on the real line, 2014, arXiv: 1407.2861

[12] Montgomery H. L., Vaughan R. C., Multiplicative number theory, v. I, Cambridge Studies in Advanced Mathematics, 97, Classical theory, Cambridge University Press, Cambridge, 2007 | MR | Zbl

[13] Voronoï G., “Sur une fonction transcendante et ses applications à la sommation de quelques séries”, Ann. Sci. École Norm. Sup. (3), 21 (1904), 207–267 ; 459–533 | MR | Zbl

[14] Kaliada D. U., “Distribution of real algebraic numbers of a given degree”, Dokl. Nats. Akad. Nauk Belarusi, 56:3 (2012), 28–33 (In Belarusian) | MR

[15] Kaliada D. U., “Distribution of algebraic integers of a given degree in the real line”, Dokl. Nats. Akad. Nauk Belarusi, 59:1 (2015), 18–22 (In Belarusian) | MR

[16] Koleda D. V., “Distribution of real algebraic numbers of the second degree”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2013, no. 3, 54–63 (In Russian) | MR

[17] Koleda D. V., “On the asymptotic distribution of algebraic numbers with growing naive height”, Chebyshevskii Sb., 16:1 (2015), 191–204 (In Russian) | MR