On algebraic integers and monic polynomials of second degree
Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 117-129

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the algebraic integers of second degree and reducible quadratic monic polynomials with integer coefficients. Let $Q\ge 4$ be an integer. Define $\Omega_n(Q,S)$ to be the number of algebraic integers of degree $n$ and height $\le Q$ belonging to $S\subseteq\mathbb{R}$. We improve the remainder term of the asymptotic formula for $\Omega_2(Q,I)$, where $I$ is an arbitrary interval. Denote by $\mathcal{R}(Q)$ the set of reducible monic polynomials of second degree with integer coefficients and height $\le Q$. We obtain the formula $$ \#\mathcal{R}(Q) = 2 \sum_{k=1}^Q \tau(k) + 2Q + \left[\sqrt{Q}\right] - 1, $$ where $\tau(k)$ is the number of divisors of $k$. Besides we show that the number of real algebraic integers of second degree and height $\le Q$ has the asymptotics $$ \Omega_2(Q,\mathbb{R}) = 8 Q^2 - \frac{16}{3}Q\sqrt{Q} - 4Q\ln Q + 8(1-\gamma) Q + O\!\left(\sqrt{Q}\right), $$ where $\gamma$ is the Euler constant. It is known that the density function of the distribution of algebraic integers of degree $n$ uniformly tends to the density function of algebraic numbers of degree $n-1$. We show that for $n=2$ the integral of their difference over the real line has nonzero limit as height of numbers tends to infinity. Bibliography: 17 titles.
Keywords: algebraic integers, distribution of algebraic integers, quadratic irrationalities, integral monic polynomials.
@article{CHEB_2016_17_1_a8,
     author = {D. V. Koleda},
     title = {On algebraic integers and monic polynomials of second degree},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {117--129},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a8/}
}
TY  - JOUR
AU  - D. V. Koleda
TI  - On algebraic integers and monic polynomials of second degree
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 117
EP  - 129
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a8/
LA  - ru
ID  - CHEB_2016_17_1_a8
ER  - 
%0 Journal Article
%A D. V. Koleda
%T On algebraic integers and monic polynomials of second degree
%J Čebyševskij sbornik
%D 2016
%P 117-129
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a8/
%G ru
%F CHEB_2016_17_1_a8
D. V. Koleda. On algebraic integers and monic polynomials of second degree. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 117-129. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a8/