Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_1_a5, author = {Do Duc Tam}, title = {On the zeros of the {Riemann} zeta function, lying in almost all short intervals of the critical line}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {71--89}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a5/} }
TY - JOUR AU - Do Duc Tam TI - On the zeros of the Riemann zeta function, lying in almost all short intervals of the critical line JO - Čebyševskij sbornik PY - 2016 SP - 71 EP - 89 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a5/ LA - ru ID - CHEB_2016_17_1_a5 ER -
Do Duc Tam. On the zeros of the Riemann zeta function, lying in almost all short intervals of the critical line. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 71-89. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a5/
[1] Riemann B., The works, OGIZ, M.–L., 1948, 479 pp. (Russian)
[2] Hardy G. H., Littlewood J. E., “The zeros of Riemann's zeta-function on the critical line”, Mathematische Zeitschrift, 10 (1921), 283–317 | DOI | MR | Zbl
[3] Selberg A., “On the zeros of Riemann's zeta-function”, Skr. Norske Vid. Akad. Oslo, 10 (1942), 1–59 | MR
[4] Karatsuba A. A., “On the distance between consecutive zeros of the Riemann zeta function that lie on the critical line”, Trudy Mat. Inst. Steklov, 157, 1981, 49–63 (Russian) | MR | Zbl
[5] Karatsuba A. A., “On the zeros of the function $ \zeta(s)$ on short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 48:3 (1984), 569–584 (Russian) | MR | Zbl
[6] Karatsuba A. A., “The distribution of zeros of the function $\zeta(1/2+it)$”, Izv. Akad. Nauk SSSR. Ser. Math., 48:6 (1984), 1214–1224 (Russian) | MR | Zbl
[7] Karatsuba A. A., “Zeros of the Riemann zeta function on the critical line”, Trudy Mat. Inst. Steklov, 167 (1985), 167–178 (Russian) | MR | Zbl
[8] Karatsuba A. A., “On the real zeros of the function $\zeta(1/2+it)$”, Uspekhi Mat. Nauk, 40:4 (1985), 171–172 (Russian) | MR | Zbl
[9] Karatsuba A. A., “The Riemann zeta function and its zeros”, Uspekhi Mat. Nauk, 40:5 (1985), 23–82 (Russian) | MR | Zbl
[10] Karatsuba A. A., “On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 56:2 (1992), 372–397 (Russian)
[11] Karatsuba A. A., “A refinement of theorems on the number of zeros lying on intervals of the critical line of certain Dirichlet series”, Uspekhi Mat. Nauk, 47:2 (1992), 193–194 (Russian) | MR | Zbl
[12] Kiseleva L. V., “The number of zeros of the function $\zeta(s)$ on “almost all” short intervals of the critical line”, Math. USSR-Izv., 32:3 (1989), 475–499 | DOI | MR
[13] Malysev A. V., “On the representation of integers by positive quadratic forms”, Trudy Mat. Inst. Steklov, 65 (1962), 3–212 (Russian) | MR | Zbl
[14] Titchmarsh E. K., Teoriya dzeta-funkcii Rimana, Mir, M., 1953, 409 pp. (Russian)
[15] Karatsuba A. A., Fundamentals of analytic number theory, Nauka, M., 1983, 240 pp. (Russian) | MR
[16] Voronin S. V., Karatsuba A. A., The Riemann zeta-function, Fizmatlit, M., 1994, 376 pp. (Russian) | MR
[17] Karatsuba A. A., “A new approach to the problem of the zeros of some Dirichlet series”, Proc. Steklov Inst. Math., 207:6 (1995), 163–177 | MR | Zbl