On the zeros of the Riemann zeta function, lying in almost all short intervals of the critical line
Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 71-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the distribution of non-trivial zeros of the Riemann zeta function $\zeta(s)$, which are on the critical line $\Re {s}=1/2$. On the half-plane $\Re{s}>1$, the Riemann zeta function is defined by Dirichlet series $$ \zeta(s)=\sum_{n=1}^{+\infty}n^{-s}, $$ and it can be analytically continued to the whole complex plane except the point $ s = 1$. It is well-known that the non-trivial zeros of the Riemann zeta function are symmetric about the real axis and the line $\Re{s}=1/2$. This line is called critical. In 1859, Riemann conjectured that all non-trivial zeros of the Riemann zeta function lie on the critical line $\Re{s}=1/2$. Hardy was the first to show in 1914 that $\zeta(1/2+it)$ has infinitely many real zeros. In 1942, Selberg obtained lower bound of the correct order of magnitude for the number zeros of the Riemann zeta functions on intervals of critical line $[T,T+H], H=T^{0.5+\varepsilon}$, where $\varepsilon $ — an arbitrary small constant. In 1984, A. A. Karatsuba proved Selberg's result for shorter intervals of critical line $[T,T+H], H=T^{27/82+\varepsilon}$. It is difficult to reduce the length of interval, which was pointed out above. However, if we consider this problem on average, then it was solved by Karatsuba. He proved that almost all intervals of line $ \Re {s} = 1/2 $ of the form $ [T, T + X^{\varepsilon}] $, where $ 0 $, contain more than $ c_0 (\varepsilon) T^{\varepsilon} \ln T $ zeros of odd orders of the function $ \zeta (1/2 + it) $. In 1988, Kicileva L. V. obtained result of this kind, but for the averaging intervals $ (X, X + X^{11/12 + \varepsilon}) $. In this paper, the length of the averaging interval has reduced. We proved Karatsuba's result for interval $ (X, X + X^{7/8 + \varepsilon})$. Bibliography: 17 titles.
Keywords: the Riemann zeta function, non-trivial zeros, critical line.
@article{CHEB_2016_17_1_a5,
     author = {Do Duc Tam},
     title = {On the zeros of the {Riemann} zeta function, lying in almost all short intervals of the critical line},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {71--89},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a5/}
}
TY  - JOUR
AU  - Do Duc Tam
TI  - On the zeros of the Riemann zeta function, lying in almost all short intervals of the critical line
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 71
EP  - 89
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a5/
LA  - ru
ID  - CHEB_2016_17_1_a5
ER  - 
%0 Journal Article
%A Do Duc Tam
%T On the zeros of the Riemann zeta function, lying in almost all short intervals of the critical line
%J Čebyševskij sbornik
%D 2016
%P 71-89
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a5/
%G ru
%F CHEB_2016_17_1_a5
Do Duc Tam. On the zeros of the Riemann zeta function, lying in almost all short intervals of the critical line. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 71-89. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a5/

[1] Riemann B., The works, OGIZ, M.–L., 1948, 479 pp. (Russian)

[2] Hardy G. H., Littlewood J. E., “The zeros of Riemann's zeta-function on the critical line”, Mathematische Zeitschrift, 10 (1921), 283–317 | DOI | MR | Zbl

[3] Selberg A., “On the zeros of Riemann's zeta-function”, Skr. Norske Vid. Akad. Oslo, 10 (1942), 1–59 | MR

[4] Karatsuba A. A., “On the distance between consecutive zeros of the Riemann zeta function that lie on the critical line”, Trudy Mat. Inst. Steklov, 157, 1981, 49–63 (Russian) | MR | Zbl

[5] Karatsuba A. A., “On the zeros of the function $ \zeta(s)$ on short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 48:3 (1984), 569–584 (Russian) | MR | Zbl

[6] Karatsuba A. A., “The distribution of zeros of the function $\zeta(1/2+it)$”, Izv. Akad. Nauk SSSR. Ser. Math., 48:6 (1984), 1214–1224 (Russian) | MR | Zbl

[7] Karatsuba A. A., “Zeros of the Riemann zeta function on the critical line”, Trudy Mat. Inst. Steklov, 167 (1985), 167–178 (Russian) | MR | Zbl

[8] Karatsuba A. A., “On the real zeros of the function $\zeta(1/2+it)$”, Uspekhi Mat. Nauk, 40:4 (1985), 171–172 (Russian) | MR | Zbl

[9] Karatsuba A. A., “The Riemann zeta function and its zeros”, Uspekhi Mat. Nauk, 40:5 (1985), 23–82 (Russian) | MR | Zbl

[10] Karatsuba A. A., “On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 56:2 (1992), 372–397 (Russian)

[11] Karatsuba A. A., “A refinement of theorems on the number of zeros lying on intervals of the critical line of certain Dirichlet series”, Uspekhi Mat. Nauk, 47:2 (1992), 193–194 (Russian) | MR | Zbl

[12] Kiseleva L. V., “The number of zeros of the function $\zeta(s)$ on “almost all” short intervals of the critical line”, Math. USSR-Izv., 32:3 (1989), 475–499 | DOI | MR

[13] Malysev A. V., “On the representation of integers by positive quadratic forms”, Trudy Mat. Inst. Steklov, 65 (1962), 3–212 (Russian) | MR | Zbl

[14] Titchmarsh E. K., Teoriya dzeta-funkcii Rimana, Mir, M., 1953, 409 pp. (Russian)

[15] Karatsuba A. A., Fundamentals of analytic number theory, Nauka, M., 1983, 240 pp. (Russian) | MR

[16] Voronin S. V., Karatsuba A. A., The Riemann zeta-function, Fizmatlit, M., 1994, 376 pp. (Russian) | MR

[17] Karatsuba A. A., “A new approach to the problem of the zeros of some Dirichlet series”, Proc. Steklov Inst. Math., 207:6 (1995), 163–177 | MR | Zbl