Distribution of special algebraic points in domains of small measure
Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 52-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems related to the distribution of algebraic numbers and points with algebraically conjugate coordinates are a natural generalization of problems connected with estimating of number of integer and rational points in figures and bodies of a Euclidean space. In this paper we consider a problem related to the distribution of special algebraic points $\boldsymbol{\alpha}=(\alpha_1,\alpha_2)$ with algebraically conjugate coordinates $\alpha_1$ and $\alpha_2$ such that their height and degree are bounded and the absolute values of $P'(\alpha_1)$ and $P'(\alpha_1)$ where $P(t)$ is a minimal polynomial of $\alpha_1$ and $\alpha_2$ are small. The sphere of application of this points is problems related to Mahler's classification of numbers [1] proposed in 1932 and Kosma's classification of numbers [2] proposed some years later. One of this is a question: do Mahler's T-numbers exist? This question has remained unanswered for nearly 40 years and only in 1970 W. Schmidt [3] showed that the class of T-numbers is not empty and proposed the construction of this numbers. Another problem is a question about difference between Mahler's and Koksma's classifications. In 2003 Y. Bugeaud published a paper [4] where he proved that there are exist a numbers with different Mahler's and Koksma's characteristics. Special algebraic points $\boldsymbol{\alpha}=(\alpha_1,\alpha_2)$ considered in this paper are used to prove this results. We consider special algebraic points $\boldsymbol{\alpha}=(\alpha_1,\alpha_2)$ such that the height of algebraically conjugate numbers $\alpha_1$ and $\alpha_2$ is bounded by $Q$, their degree is bounded by $n$ and $|P'(\alpha_1)|\leq Q^{1-v_1}$, $|P'(\alpha_2)|\leq Q^{1-v_2}$ for $0$ where $P(t)$ is a minimal polynomial of this numbers. In this paper we obtained the lower and upper bound for the quantity of special algebraic numbers in rectangles with the size of $Q^{-1+v_1+v_2}$. Bibliography: 22 titles.
Keywords: metric theory of simultaneous Diophantine approximations, Lebesgue measure, conjugate algebraic numbers.
@article{CHEB_2016_17_1_a4,
     author = {A. G. Gusakova},
     title = {Distribution of special algebraic points in domains of small measure},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {52--70},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a4/}
}
TY  - JOUR
AU  - A. G. Gusakova
TI  - Distribution of special algebraic points in domains of small measure
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 52
EP  - 70
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a4/
LA  - ru
ID  - CHEB_2016_17_1_a4
ER  - 
%0 Journal Article
%A A. G. Gusakova
%T Distribution of special algebraic points in domains of small measure
%J Čebyševskij sbornik
%D 2016
%P 52-70
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a4/
%G ru
%F CHEB_2016_17_1_a4
A. G. Gusakova. Distribution of special algebraic points in domains of small measure. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 52-70. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a4/

[1] Mahler K., “Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I; II”, J. reine und angew. Math., 166 (1932), 118–136 ; 137–150 | MR | MR

[2] Koksma J. F., “Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen”, Mh. Math. Physik, 48 (1939), 176–189 | DOI | MR

[3] Schmidt W., “T-numbers do exist” (Rome, 1968/1969), Symposia Mathematica, IV, INDAM, 1970, 3–26 | MR

[4] Bugeaud Y., “Mahler's classification of numbers compared with Kosma's”, Acta Arith., 110:1 (2003), 89–105 | DOI | MR | Zbl

[5] Sprindzhuk V. G., Mahlers's problem in metric number theory, Nauka i tehnika, Minsk, 1967, 184 pp. (in Russian)

[6] Mahler K., “An inequality for the discriminant of a polynomial”, Michigan Math. J., 11 (1964), 257–262 | DOI | MR | Zbl

[7] Everst J.-H., “Distance between the conjugates if an algebraic number”, Publ. Math. Debrecen, 65:3–4 (2004), 323–340 | MR

[8] Beresnevich V., Bernik V., Götze F., “The distribution of close conjugate algebraic numbers”, Compos. Math., 146:5 (2010), 1165–1179 | DOI | MR | Zbl

[9] Budarina N. V., Götze F., “Distance between conjugate algebraic numbers in clusters”, Mat. Zametki, 94:5–6 (2013), 816–819 | DOI | MR | Zbl

[10] Bugeaud Y., Mignotte M., “Polynomials root separation”, Int. J. Number Theory, 6:3 (2010), 587–602 | DOI | MR | Zbl

[11] Bugeaud Y., Mignotte M., “On the distance between roots of integer polynomials”, Proc. Edinb. Math. Soc., 47:3 (2004), 553–556 | DOI | MR | Zbl

[12] Schmidt W. M., Diophantine approximation, Lecture Notes in Math., 785, Springer, Berlin, 1980, x+299 pp. | MR | Zbl

[13] Bugeaud Y., “Approximation by algebraic integers and Hausdorff dimension”, J. London Math. Soc., 65:2 (2002), 547–559 | DOI | MR | Zbl

[14] Bernik V., Götze F., “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izv. Math., 79:1 (2015), 18–39 | DOI | DOI | MR | Zbl

[15] Bernik V., Götze F., Kukso O., “On algebraic points in the plane near smooth curves”, Lithuanian Math. Journal, 54:3 (2014), 231–251 | DOI | MR | Zbl

[16] Gusakova A. G., Bernik V. I., “The quantity of algebraic numbers with small derivative of the minimal polynomial in a short intervals”, Trudy Inst. Matematiki, 22:2 (2014), 18–31

[17] Bernik V. I., “Application of the Hausdorff dimension in the theory of Diophantine approximations”, Acta Arith., 42:3 (1983), 219–253 | MR | Zbl

[18] Bernik V. I., Dombrovskii I. R., “Effective estimates for the measure of sets defined by Diophantine conditions”, Proc. Steklov Inst. Math., 207, no. 6, 1995, 35–40 | MR | MR | Zbl

[19] Bernik V. I., “The exact order of approximating zero by values of integral polynomials”, Acta Arith., 53:1 (1989), 17–28 (in Russian) | MR | Zbl

[20] Davenport H., “On a principle of Lipschitz”, J. London Math. Soc., 26 (1951), 179–183 | DOI | MR | Zbl

[21] Huxley M. N., Area, lattice points, and exponential sums, London Mathematical Society Monographs, New Series, 13, Oxford University Press, New York, 1996 | MR | Zbl

[22] Bugeaud Y., Approximation by algebraic numbers, Cambridge Tracts in Mathematics, 160, Cambridge University Press, Cambridge, 2004, 274 pp. | MR | Zbl