Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_1_a4, author = {A. G. Gusakova}, title = {Distribution of special algebraic points in domains of small measure}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {52--70}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a4/} }
A. G. Gusakova. Distribution of special algebraic points in domains of small measure. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 52-70. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a4/
[1] Mahler K., “Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I; II”, J. reine und angew. Math., 166 (1932), 118–136 ; 137–150 | MR | MR
[2] Koksma J. F., “Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen”, Mh. Math. Physik, 48 (1939), 176–189 | DOI | MR
[3] Schmidt W., “T-numbers do exist” (Rome, 1968/1969), Symposia Mathematica, IV, INDAM, 1970, 3–26 | MR
[4] Bugeaud Y., “Mahler's classification of numbers compared with Kosma's”, Acta Arith., 110:1 (2003), 89–105 | DOI | MR | Zbl
[5] Sprindzhuk V. G., Mahlers's problem in metric number theory, Nauka i tehnika, Minsk, 1967, 184 pp. (in Russian)
[6] Mahler K., “An inequality for the discriminant of a polynomial”, Michigan Math. J., 11 (1964), 257–262 | DOI | MR | Zbl
[7] Everst J.-H., “Distance between the conjugates if an algebraic number”, Publ. Math. Debrecen, 65:3–4 (2004), 323–340 | MR
[8] Beresnevich V., Bernik V., Götze F., “The distribution of close conjugate algebraic numbers”, Compos. Math., 146:5 (2010), 1165–1179 | DOI | MR | Zbl
[9] Budarina N. V., Götze F., “Distance between conjugate algebraic numbers in clusters”, Mat. Zametki, 94:5–6 (2013), 816–819 | DOI | MR | Zbl
[10] Bugeaud Y., Mignotte M., “Polynomials root separation”, Int. J. Number Theory, 6:3 (2010), 587–602 | DOI | MR | Zbl
[11] Bugeaud Y., Mignotte M., “On the distance between roots of integer polynomials”, Proc. Edinb. Math. Soc., 47:3 (2004), 553–556 | DOI | MR | Zbl
[12] Schmidt W. M., Diophantine approximation, Lecture Notes in Math., 785, Springer, Berlin, 1980, x+299 pp. | MR | Zbl
[13] Bugeaud Y., “Approximation by algebraic integers and Hausdorff dimension”, J. London Math. Soc., 65:2 (2002), 547–559 | DOI | MR | Zbl
[14] Bernik V., Götze F., “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izv. Math., 79:1 (2015), 18–39 | DOI | DOI | MR | Zbl
[15] Bernik V., Götze F., Kukso O., “On algebraic points in the plane near smooth curves”, Lithuanian Math. Journal, 54:3 (2014), 231–251 | DOI | MR | Zbl
[16] Gusakova A. G., Bernik V. I., “The quantity of algebraic numbers with small derivative of the minimal polynomial in a short intervals”, Trudy Inst. Matematiki, 22:2 (2014), 18–31
[17] Bernik V. I., “Application of the Hausdorff dimension in the theory of Diophantine approximations”, Acta Arith., 42:3 (1983), 219–253 | MR | Zbl
[18] Bernik V. I., Dombrovskii I. R., “Effective estimates for the measure of sets defined by Diophantine conditions”, Proc. Steklov Inst. Math., 207, no. 6, 1995, 35–40 | MR | MR | Zbl
[19] Bernik V. I., “The exact order of approximating zero by values of integral polynomials”, Acta Arith., 53:1 (1989), 17–28 (in Russian) | MR | Zbl
[20] Davenport H., “On a principle of Lipschitz”, J. London Math. Soc., 26 (1951), 179–183 | DOI | MR | Zbl
[21] Huxley M. N., Area, lattice points, and exponential sums, London Mathematical Society Monographs, New Series, 13, Oxford University Press, New York, 1996 | MR | Zbl
[22] Bugeaud Y., Approximation by algebraic numbers, Cambridge Tracts in Mathematics, 160, Cambridge University Press, Cambridge, 2004, 274 pp. | MR | Zbl