On the solvability of Waring's equation involving natural numbers of a special type
Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 37-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a continuation of our research on additive problems of number theory with variables that belong to some special set. We have solved several well-known additive problems such that Ternary Goldbach's Problem, Hua Loo Keng's Problem, Lagrange's Problem, Waring's Problem. Asymptotic formulas were obtained for these problems with restriction on the set of variables. The main terms of our formulas differ from ones of the corresponding classical problems. In the main terms the series of the form $$ \sigma_k (N,a,b)=\sum_{|m|\infty} e^{2\pi i m(\eta N-0,5 k(a+b))} \frac{\sin^k \pi m (b-a)}{\pi ^k m^k}. $$ appear. These series were investigated by the authors. Let $\eta$ be the irrational algebraic number, $a$ and $b$ are arbitrary real numbers of the interval $[0,1]$. There are natural numbers $x_1, x_2, \ldots, x_k$ such that $$a\le\{\eta x_i^n\}$$ In this paper we evaluate the smallest $k$ for which the equation $$ x_1^n+x_2^n+\ldots+x_k^n=N $$ is solvable. Bibliography: 23 titles.
Keywords: Waring's Problem, additive problems, numbers of a special type, number of solutions, asymptotic formula, irrational algebraic number.
@article{CHEB_2016_17_1_a3,
     author = {S. A. Gritsenko and N. N. Motkina},
     title = {On the solvability of {Waring's} equation involving natural numbers of a special type},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {37--51},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a3/}
}
TY  - JOUR
AU  - S. A. Gritsenko
AU  - N. N. Motkina
TI  - On the solvability of Waring's equation involving natural numbers of a special type
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 37
EP  - 51
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a3/
LA  - ru
ID  - CHEB_2016_17_1_a3
ER  - 
%0 Journal Article
%A S. A. Gritsenko
%A N. N. Motkina
%T On the solvability of Waring's equation involving natural numbers of a special type
%J Čebyševskij sbornik
%D 2016
%P 37-51
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a3/
%G ru
%F CHEB_2016_17_1_a3
S. A. Gritsenko; N. N. Motkina. On the solvability of Waring's equation involving natural numbers of a special type. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 37-51. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a3/

[1] Balog A., Friedlander J., “A hybrid of theorems of Vinogradov and Piatetski–Shapiro”, Pacific J. Math., 156:1 (1992), 45–62 | DOI | MR | Zbl

[2] Vinogradov I. M., “Representation of an odd number as a sum of three prime numbers”, DAN SSSR, 15 (1937), 169–172

[3] Vinogradov I. M., “Some common property of distribution of prime numbers”, Mat. sb., 7:2 (1940), 365–372 | MR

[4] Vinogradov I. M., Special variants of the method of trigonometric sums, Nauka, M., 1976, 120 pp. (in Russian) | MR

[5] Vinogradov I. M., The method of trigonometric sums in the theory of numbers, Second edition, Nauka, M., 1980, 144 pp. (in Russian) | MR

[6] Gritsenko S. A., “On a problem of Vinogradov”, Mat. Zametki, 39:5 (1986), 625–640 | MR | Zbl

[7] Gritsenko S. A., “Ternary Goldbach's problem and Goldbach–Waring's problem with prime numbers lying in intervals of a special type”, Uspekhi Mat. Nauk, 43:4(262) (1988), 203–204

[8] Gritsenko S., Motkina N., Ternary Goldbach's Problem Involving Primes of a Special type, 25 Dec 2008, arXiv: 0812.4606

[9] Gritsenko S., Motkina N., Hua Loo Keng's Problem Involving Primes of a Special Type, 26 Dec 2008, arXiv: 0812.4665

[10] Gritsenko S., Motkina N., “Representation of natural numbers by sums of four squares of integers having a special form”, Journal of Mathematical Sciences, 173:2 (2011), 194–200 | DOI | MR | Zbl

[11] Gritsenko S. A., Motkina N. N., “On the calculation of some special series”, Chebyshevskii Sb., 12:4 (2011), 85–92 | MR | Zbl

[12] Gritsenko S. A., Motkina N. N., “Waring's problem involving natural numbers of a special type”, Chebyshevskii Sb., 15:3 (2014), 31–47 | Zbl

[13] Deshouillers J. M., “Sur la repartition des nombres $[n^c]$ dans les progressions arithmetiques”, Acad. Sc. Paris. Serie A, 277 (1993), 647–650 | MR

[14] Karatsuba A. A., “About one problem with prime numbers”, DAN SSSR, 259:6 (1981), 1291–1293 | MR | Zbl

[15] Karatsuba A. A., Fundamentals of the analytical number theory, Second edition, Nauka, M., 1983, 240 pp. (in Russian) | MR

[16] Kaufman R. M., “About distribution of $\{\sqrt p\}$”, Mat. Zametki, 26:4 (1979), 497–504 | MR | Zbl

[17] Kloosterman H. D., “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta mathematica, 49 (1926), 407–464 | DOI | MR

[18] Kolesnik G., “Primes of the form $[n^c]$”, Pacific J. Math., 118:2 (1985), 437–447 | DOI | MR | Zbl

[19] Linnik Y. V., “About one theorem of the theory of prime numbers”, DAN SSSR, 47 (1945), 7–8

[20] Pyatetskii-Shapiro I. I., “On the distribution of prime numbers in sequences of the form $[f(n)]$”, Mat. sb., 33(75):3 (1953), 559–566 | MR | Zbl

[21] Hua L. K., “On the representation of numbers as the sum of powers of primes”, Math. Z., 44 (1938), 335–346 | DOI | MR

[22] Hua Luo-Geng, The method of trigonometric sums and its application in the number theory, Mir, M., 1964, 194 pp. (in Russian) | MR

[23] Changa M. E., “Primes in Special Intervals and Additive Problems with Such Numbers”, Mat. Zametki, 73:3 (2003), 423–436 | DOI | MR | Zbl