Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_1_a3, author = {S. A. Gritsenko and N. N. Motkina}, title = {On the solvability of {Waring's} equation involving natural numbers of a special type}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {37--51}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a3/} }
TY - JOUR AU - S. A. Gritsenko AU - N. N. Motkina TI - On the solvability of Waring's equation involving natural numbers of a special type JO - Čebyševskij sbornik PY - 2016 SP - 37 EP - 51 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a3/ LA - ru ID - CHEB_2016_17_1_a3 ER -
S. A. Gritsenko; N. N. Motkina. On the solvability of Waring's equation involving natural numbers of a special type. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 37-51. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a3/
[1] Balog A., Friedlander J., “A hybrid of theorems of Vinogradov and Piatetski–Shapiro”, Pacific J. Math., 156:1 (1992), 45–62 | DOI | MR | Zbl
[2] Vinogradov I. M., “Representation of an odd number as a sum of three prime numbers”, DAN SSSR, 15 (1937), 169–172
[3] Vinogradov I. M., “Some common property of distribution of prime numbers”, Mat. sb., 7:2 (1940), 365–372 | MR
[4] Vinogradov I. M., Special variants of the method of trigonometric sums, Nauka, M., 1976, 120 pp. (in Russian) | MR
[5] Vinogradov I. M., The method of trigonometric sums in the theory of numbers, Second edition, Nauka, M., 1980, 144 pp. (in Russian) | MR
[6] Gritsenko S. A., “On a problem of Vinogradov”, Mat. Zametki, 39:5 (1986), 625–640 | MR | Zbl
[7] Gritsenko S. A., “Ternary Goldbach's problem and Goldbach–Waring's problem with prime numbers lying in intervals of a special type”, Uspekhi Mat. Nauk, 43:4(262) (1988), 203–204
[8] Gritsenko S., Motkina N., Ternary Goldbach's Problem Involving Primes of a Special type, 25 Dec 2008, arXiv: 0812.4606
[9] Gritsenko S., Motkina N., Hua Loo Keng's Problem Involving Primes of a Special Type, 26 Dec 2008, arXiv: 0812.4665
[10] Gritsenko S., Motkina N., “Representation of natural numbers by sums of four squares of integers having a special form”, Journal of Mathematical Sciences, 173:2 (2011), 194–200 | DOI | MR | Zbl
[11] Gritsenko S. A., Motkina N. N., “On the calculation of some special series”, Chebyshevskii Sb., 12:4 (2011), 85–92 | MR | Zbl
[12] Gritsenko S. A., Motkina N. N., “Waring's problem involving natural numbers of a special type”, Chebyshevskii Sb., 15:3 (2014), 31–47 | Zbl
[13] Deshouillers J. M., “Sur la repartition des nombres $[n^c]$ dans les progressions arithmetiques”, Acad. Sc. Paris. Serie A, 277 (1993), 647–650 | MR
[14] Karatsuba A. A., “About one problem with prime numbers”, DAN SSSR, 259:6 (1981), 1291–1293 | MR | Zbl
[15] Karatsuba A. A., Fundamentals of the analytical number theory, Second edition, Nauka, M., 1983, 240 pp. (in Russian) | MR
[16] Kaufman R. M., “About distribution of $\{\sqrt p\}$”, Mat. Zametki, 26:4 (1979), 497–504 | MR | Zbl
[17] Kloosterman H. D., “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta mathematica, 49 (1926), 407–464 | DOI | MR
[18] Kolesnik G., “Primes of the form $[n^c]$”, Pacific J. Math., 118:2 (1985), 437–447 | DOI | MR | Zbl
[19] Linnik Y. V., “About one theorem of the theory of prime numbers”, DAN SSSR, 47 (1945), 7–8
[20] Pyatetskii-Shapiro I. I., “On the distribution of prime numbers in sequences of the form $[f(n)]$”, Mat. sb., 33(75):3 (1953), 559–566 | MR | Zbl
[21] Hua L. K., “On the representation of numbers as the sum of powers of primes”, Math. Z., 44 (1938), 335–346 | DOI | MR
[22] Hua Luo-Geng, The method of trigonometric sums and its application in the number theory, Mir, M., 1964, 194 pp. (in Russian) | MR
[23] Changa M. E., “Primes in Special Intervals and Additive Problems with Such Numbers”, Mat. Zametki, 73:3 (2003), 423–436 | DOI | MR | Zbl