Vladimir Igorevich Parusnikov
Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 286-298.

Voir la notice de l'article provenant de la source Math-Net.Ru

Vladimir Igorevich Parusnikov died on August 22, 2015 after a long and serious illness. He was born in Moscow on January 21, 1957. Vladimir Igorevich graduated from the Department of Mechanics and Mathematics of the Lomonosov Moscow State University, finished his postgraduate studies in 1982 and he defended his thesis in 1983 in there. At the Keldysh Institute of Applied Mathematics he worked since 1982 as a junior researcher, and since 1996 — as a senior researcher. He has published more than 45 scientific papers on functional and numerical continued fractions and their generalizations. V. I. Parusnikov was kind, honest, responsible man and a talented mathematician. His passing is a great loss for the KIAM and for science in general. He was buried at Khovanskoye cemetery in Moscow. We provide a survey of his mathematical work. First, he studied the generalized functional continued fractions and got rather strong results. The last twenty years he, together with A. D. Bruno, was looking for a multi-dimensional generalization of the continued fraction giving the best Diophantine approximations and the periods in the algebraic case. Such a generalization was finally found. The first Section of the paper was written by A. I. Aptekarev, the second Section was written by A. D. Bruno, the list of scientific publications of V. I. Parusnikov was prepared by A. B. Batkhin. Bibliography: 71 titles.
Keywords: rational approximation, continued fraction, multidimensional generalization of continued fraction.
@article{CHEB_2016_17_1_a22,
     author = {A. I. Aptekarev and A. B. Batkhin and A. D. Bruno},
     title = {Vladimir {Igorevich} {Parusnikov}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {286--298},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a22/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - A. B. Batkhin
AU  - A. D. Bruno
TI  - Vladimir Igorevich Parusnikov
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 286
EP  - 298
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a22/
LA  - ru
ID  - CHEB_2016_17_1_a22
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A A. B. Batkhin
%A A. D. Bruno
%T Vladimir Igorevich Parusnikov
%J Čebyševskij sbornik
%D 2016
%P 286-298
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a22/
%G ru
%F CHEB_2016_17_1_a22
A. I. Aptekarev; A. B. Batkhin; A. D. Bruno. Vladimir Igorevich Parusnikov. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 286-298. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a22/

[47] Jacobi C. G. J., “Ueber die Auflösung der Gleichung $a_lx_1 + a_2x_2 + \ldots + a_nx_n = f_{n}$”, J. Reine Angew. Math., 69 (1868), 1–28 | DOI | MR

[48] Jacobi C. G. J., “Allgemeine Theorie der Kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorgegebenden gebildet wird”, J. Reine Angew. Math., 69 (1868), 29–64 | DOI | MR

[49] Perron O., “Grundlagen für eine Theorie des Jacobischen Kettenbrüchalgorithmus”, Math. Ann., 64:1 (1907), 1–76 | DOI | MR | Zbl

[50] Bernstein L., The Jacobi–Perron algorithm. Its theory and application, Lecture notes in Mathematics, 207, Springer-Verlag, 1971 | DOI | MR | Zbl

[51] de Bruin M. G., “Convergence of generalized $C$-fractions”, J. Approx. Theory, 24:3 (1978), 177–207 | DOI | MR | Zbl

[52] de Bruin M. G., “The interruption phenomenon for generalized continued fractions”, Bull. Austral. Math. Soc., 19:2 (1978), 245–272 | DOI | MR | Zbl

[53] Poincaré H., “Sur les equations linéaires aux différentielles et aux différences finies”, Amer. J. Math., 7:3 (1885), 203–258 | DOI | MR

[54] Perron O., “Über einen Satz des Herrn Poincaré”, J. Reine Angew. Math., 136 (1909), 17–37 | MR | Zbl

[55] Aptekarev A. I., Kalyagin V. A., “Analytic properties of two-dimensional continued $P$-fraction expansions with periodic coefficients and their simultaneous Pade–Hermite approximants”, Lecture Notes in Math., 1237, Springer-Verlag, 1987, 145–160 | DOI | MR

[56] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[57] Nikishin E. M., Sorokin V. N., Rational Approximations and Orthogonality, Nauka, M., 1988

[58] Kalyagin V. A., “Hermite–Padé approximants and spectral analysis of nonsymmetric operators”, Mat. Sb., 185:6 (1994), 79–100

[59] Aptekarev A. I., “Multiple Orthogonal Polynomials”, J. Comput. Appl. Math., 99:1–2 (1998), 423–447 | DOI | MR | Zbl

[60] Aptekarev A. I., Kaliaguine V. A., Van Iseghem J., “The Genetic Sums' Representation for the Moments of a System of Stieltjes Functions and its Application”, Constr. Approx., 16 (2000), 487–524 | DOI | MR | Zbl

[61] Aptekarev A. I., Kaliaguine V. A., Saff E. B., “Higher-Order Three-Term Recurrences and Asymptotics of Multiple Orthogonal Polynomials”, Constr. Approx., 30 (2009), 175–223 | DOI | MR | Zbl

[62] Aptekarev A. I., “Spectral Problems of High-Order Recurrences”, Amer. Math. Soc. Transl., 233 (2014), 43–61 | MR | Zbl

[63] Lachaud G., “Polyédre d'Arnol'd et voile d'un cône simplicial: analogues du théorem de Lagrange”, C.R. Acad. Sci. Ser. 1, 317 (1993), 711–716 | MR | Zbl

[64] Klein F., “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1895, no. 3, 357–359 | Zbl

[65] Davenport H., “On the product of three homogeneous linear form, IV”, Proc. Cambridge Philos. Soc., 39 (1943), 1–21 | DOI | MR | Zbl

[66] Swinnerton-Dyer H. P. F., “On the product of three homogeneous linear forms”, Acta Arithmetica, 18 (1971), 371–385 ; Собр. соч. в 3-х томах, Из-во АН УССР, Киев, 1952, 197–391 | MR | Zbl

[67] Voronoi G. F., On Generalization of the Algorithm of Continued Fraction, Warsawa University, 1896

[68] Bruno A. D., “The correct generalization of the continued fraction”, Keldysh Institute preprints, 2003, 086, 19 pp.

[69] Bruno A. D., “Generalizations of continued fraction”, Chebyshevsky sbornik, 7:3 (2006), 4–71 | MR

[70] Bruno A. D., “Universal generalization of the continued fraction algorithm”, Chebyshevsky sbornik, 16:2 (2015), 35–65

[71] Bruno A. D., “From Diophantine approximations to Diophantine equations”, Keldysh Institute preprints, 2016, 001, 20 pp.