Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_1_a22, author = {A. I. Aptekarev and A. B. Batkhin and A. D. Bruno}, title = {Vladimir {Igorevich} {Parusnikov}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {286--298}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a22/} }
A. I. Aptekarev; A. B. Batkhin; A. D. Bruno. Vladimir Igorevich Parusnikov. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 286-298. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a22/
[47] Jacobi C. G. J., “Ueber die Auflösung der Gleichung $a_lx_1 + a_2x_2 + \ldots + a_nx_n = f_{n}$”, J. Reine Angew. Math., 69 (1868), 1–28 | DOI | MR
[48] Jacobi C. G. J., “Allgemeine Theorie der Kettenbruchähnlichen Algorithmen, in welchen jede Zahl aus drei vorgegebenden gebildet wird”, J. Reine Angew. Math., 69 (1868), 29–64 | DOI | MR
[49] Perron O., “Grundlagen für eine Theorie des Jacobischen Kettenbrüchalgorithmus”, Math. Ann., 64:1 (1907), 1–76 | DOI | MR | Zbl
[50] Bernstein L., The Jacobi–Perron algorithm. Its theory and application, Lecture notes in Mathematics, 207, Springer-Verlag, 1971 | DOI | MR | Zbl
[51] de Bruin M. G., “Convergence of generalized $C$-fractions”, J. Approx. Theory, 24:3 (1978), 177–207 | DOI | MR | Zbl
[52] de Bruin M. G., “The interruption phenomenon for generalized continued fractions”, Bull. Austral. Math. Soc., 19:2 (1978), 245–272 | DOI | MR | Zbl
[53] Poincaré H., “Sur les equations linéaires aux différentielles et aux différences finies”, Amer. J. Math., 7:3 (1885), 203–258 | DOI | MR
[54] Perron O., “Über einen Satz des Herrn Poincaré”, J. Reine Angew. Math., 136 (1909), 17–37 | MR | Zbl
[55] Aptekarev A. I., Kalyagin V. A., “Analytic properties of two-dimensional continued $P$-fraction expansions with periodic coefficients and their simultaneous Pade–Hermite approximants”, Lecture Notes in Math., 1237, Springer-Verlag, 1987, 145–160 | DOI | MR
[56] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[57] Nikishin E. M., Sorokin V. N., Rational Approximations and Orthogonality, Nauka, M., 1988
[58] Kalyagin V. A., “Hermite–Padé approximants and spectral analysis of nonsymmetric operators”, Mat. Sb., 185:6 (1994), 79–100
[59] Aptekarev A. I., “Multiple Orthogonal Polynomials”, J. Comput. Appl. Math., 99:1–2 (1998), 423–447 | DOI | MR | Zbl
[60] Aptekarev A. I., Kaliaguine V. A., Van Iseghem J., “The Genetic Sums' Representation for the Moments of a System of Stieltjes Functions and its Application”, Constr. Approx., 16 (2000), 487–524 | DOI | MR | Zbl
[61] Aptekarev A. I., Kaliaguine V. A., Saff E. B., “Higher-Order Three-Term Recurrences and Asymptotics of Multiple Orthogonal Polynomials”, Constr. Approx., 30 (2009), 175–223 | DOI | MR | Zbl
[62] Aptekarev A. I., “Spectral Problems of High-Order Recurrences”, Amer. Math. Soc. Transl., 233 (2014), 43–61 | MR | Zbl
[63] Lachaud G., “Polyédre d'Arnol'd et voile d'un cône simplicial: analogues du théorem de Lagrange”, C.R. Acad. Sci. Ser. 1, 317 (1993), 711–716 | MR | Zbl
[64] Klein F., “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1895, no. 3, 357–359 | Zbl
[65] Davenport H., “On the product of three homogeneous linear form, IV”, Proc. Cambridge Philos. Soc., 39 (1943), 1–21 | DOI | MR | Zbl
[66] Swinnerton-Dyer H. P. F., “On the product of three homogeneous linear forms”, Acta Arithmetica, 18 (1971), 371–385 ; Собр. соч. в 3-х томах, Из-во АН УССР, Киев, 1952, 197–391 | MR | Zbl
[67] Voronoi G. F., On Generalization of the Algorithm of Continued Fraction, Warsawa University, 1896
[68] Bruno A. D., “The correct generalization of the continued fraction”, Keldysh Institute preprints, 2003, 086, 19 pp.
[69] Bruno A. D., “Generalizations of continued fraction”, Chebyshevsky sbornik, 7:3 (2006), 4–71 | MR
[70] Bruno A. D., “Universal generalization of the continued fraction algorithm”, Chebyshevsky sbornik, 16:2 (2015), 35–65
[71] Bruno A. D., “From Diophantine approximations to Diophantine equations”, Keldysh Institute preprints, 2016, 001, 20 pp.