On the best linear method of approximation of some classes analytic functions in the weighted Bergman space
Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 240-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the exact values of different widths in the space $B_{q,\gamma}$, $1\leq q\leq\infty$ with the weight $\gamma$ for classes $W_{q,a}^{(r)}(\Phi,\mu)$ were calculated. These classes is consist from functions $f$, which are analytic in a circle $U_{R}:=\{z: |z|\leq R\}$ $(0$ whose $n (n\in\mathbb{N})$-th derivatives by argument $f_{a}^{(r)}$ is belong to the space $B_{q,\gamma} (1\leq q\leq\infty, 0$ and have an averaged modulus of smoothness of second order majorized by function $\Phi$, and everywhere further assumed that the function $\Phi(t), t>0$ is an arbitrary function that $\Phi(0)=0$. The exact inequalities between the best polynomial approximation of analytic functions in a unit disk and integrals consisted from averaged modulus of smoothness of second order functions with $r$-th derivatives order and concrete weight which is flow out from substantial meaning of problem statement. The obtained result is guarantee to calculate the exact values of Bernshtein and Kolmogorov's widths. Method of approximation which is used for obtaining the estimation from above the Kolmogorov n-width is learn on L. V. Taykov work which earlier is proved for modulus of smoothness of complex polynomials. The special interest is offer the problem about constructing the best linear methods of approximation of classes functions $W_{q,a}^{(r)}(\Phi,\mu)$ and connected to it the problem in calculating the exact values of Linear and Gelfand $n$-widths. The founded best linear methods is depend on given number $\mu\geq 1$ and in particular when $\mu=1$ is contain the previous proved results. Also showed the explicit form an optimal subspaces given dimension which are implement the values of widths. Bibliography: 18 titles.
Keywords: the best linear method, $n$-widths, module of smoothness.
@article{CHEB_2016_17_1_a18,
     author = {M. S. Saidusaynov},
     title = {On the best linear method of approximation of some classes analytic functions in the weighted {Bergman} space},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {240--253},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a18/}
}
TY  - JOUR
AU  - M. S. Saidusaynov
TI  - On the best linear method of approximation of some classes analytic functions in the weighted Bergman space
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 240
EP  - 253
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a18/
LA  - ru
ID  - CHEB_2016_17_1_a18
ER  - 
%0 Journal Article
%A M. S. Saidusaynov
%T On the best linear method of approximation of some classes analytic functions in the weighted Bergman space
%J Čebyševskij sbornik
%D 2016
%P 240-253
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a18/
%G ru
%F CHEB_2016_17_1_a18
M. S. Saidusaynov. On the best linear method of approximation of some classes analytic functions in the weighted Bergman space. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 240-253. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a18/

[1] Tikhomirov V. M., Some problems of theory of approximation, MSU, M., 1976, 324 pp.

[2] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985, 252 pp. | MR | Zbl

[3] Dveyrin M. Z., Chebanencko I. V., “On polynomial approximation in the weighted Banach spaces of analytic functions”, Mapping theory and approximation of functions, Nukova dumka, Kiev, 1983, 62–73

[4] Farkov Yu. A., “Widths of Hardy classes and Bergman classes on the ball in $\mathbb{C}^{n}$”, Uspekhi Mat. Nauk, 45:5(275) (1990), 197–198

[5] Farkov Yu. A., “The N-Widths of Hardy–Sobolev Spaces of Several Complex Variables”, Journal of Approximation Theory, 75 (1993), 183–197 | DOI | MR | Zbl

[6] Shabozov M. Sh., “Widths of some class of functions in the Bergman space”, Dokl. RAN, 383:2 (2002), 171–174 | MR

[7] Vakarchuk S. B., “Best linear methods of approximation and widths of classes of analytic functions in a disk”, Mat. Zametki, 57:1 (1995), 30–39 | MR

[8] Vakarchuk S. B., “On some extremal problems of approximation theory in the complex plane”, Ukr. Matem. Journal, 56:9 (2004), 1155–1171 | MR | Zbl

[9] Shabozov M. Sh, Shabozov O. Sh., “On best approximation and exact values of widths of some classes functions in the Bergman space $B_{p}, 1\leq p\leq\infty$”, Dokl. Acad. Nauk, 410:4 (2006), 461–464 | MR

[10] Vakarchuk S. B., Shabozov M. Sh., “The widths of classes of analytic functions in a disc”, Mat. Sb., 201:8 (2010), 3–22 | DOI

[11] Shabozov M. Sh., Langarshoev M. R., “The best approximation of some classes of functions in the weighted Bergman space”, Izv. Acad. Nauk, Rep. Taj, 136:3 (2009), 7–23

[12] Shabozov M. Sh., Langarshoev M. R., “On the best linear methods and widths values of some classes of analytic functions in the weighted Bergman space”, Dokl. RAN, 450:5 (2013), 518–521 | DOI | Zbl

[13] Korneichuk N. P., Exact constant in the theory of approximation, Nauka, M., 1987, 424 pp. | MR

[14] Taykov L. V., “Diameters of certain classes of analytic functions”, Mat. Zametki, 22:2 (1977), 285–295 | MR | Zbl

[15] Aynulloev N., “Widths of classes of analytic functions in the unit disk”, Geometric problems of function theory and sets, 1986, 91–101

[16] Shabozov M. Sh., Saidusaynov M. S., “The values of n-widths and the best linear method of approximation of some classes of functions in the weighted Bergman space”, Izv. TSU. Natural Science, 2014, no. 3, 40–57

[17] Farkov Yu. A., “On the best linear approximation of holomorphic functions”, Fundam. Prikl. Mat., 19:5 (2014), 185–212

[18] Saidusaynov M. S., “On the values of widths and the best linear methods of approximation in the weighted Bergman space”, Izv. TSU. Natural Science, 2015, no. 3, 91–104