Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_1_a18, author = {M. S. Saidusaynov}, title = {On the best linear method of approximation of some classes analytic functions in the weighted {Bergman} space}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {240--253}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a18/} }
TY - JOUR AU - M. S. Saidusaynov TI - On the best linear method of approximation of some classes analytic functions in the weighted Bergman space JO - Čebyševskij sbornik PY - 2016 SP - 240 EP - 253 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a18/ LA - ru ID - CHEB_2016_17_1_a18 ER -
M. S. Saidusaynov. On the best linear method of approximation of some classes analytic functions in the weighted Bergman space. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 240-253. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a18/
[1] Tikhomirov V. M., Some problems of theory of approximation, MSU, M., 1976, 324 pp.
[2] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985, 252 pp. | MR | Zbl
[3] Dveyrin M. Z., Chebanencko I. V., “On polynomial approximation in the weighted Banach spaces of analytic functions”, Mapping theory and approximation of functions, Nukova dumka, Kiev, 1983, 62–73
[4] Farkov Yu. A., “Widths of Hardy classes and Bergman classes on the ball in $\mathbb{C}^{n}$”, Uspekhi Mat. Nauk, 45:5(275) (1990), 197–198
[5] Farkov Yu. A., “The N-Widths of Hardy–Sobolev Spaces of Several Complex Variables”, Journal of Approximation Theory, 75 (1993), 183–197 | DOI | MR | Zbl
[6] Shabozov M. Sh., “Widths of some class of functions in the Bergman space”, Dokl. RAN, 383:2 (2002), 171–174 | MR
[7] Vakarchuk S. B., “Best linear methods of approximation and widths of classes of analytic functions in a disk”, Mat. Zametki, 57:1 (1995), 30–39 | MR
[8] Vakarchuk S. B., “On some extremal problems of approximation theory in the complex plane”, Ukr. Matem. Journal, 56:9 (2004), 1155–1171 | MR | Zbl
[9] Shabozov M. Sh, Shabozov O. Sh., “On best approximation and exact values of widths of some classes functions in the Bergman space $B_{p}, 1\leq p\leq\infty$”, Dokl. Acad. Nauk, 410:4 (2006), 461–464 | MR
[10] Vakarchuk S. B., Shabozov M. Sh., “The widths of classes of analytic functions in a disc”, Mat. Sb., 201:8 (2010), 3–22 | DOI
[11] Shabozov M. Sh., Langarshoev M. R., “The best approximation of some classes of functions in the weighted Bergman space”, Izv. Acad. Nauk, Rep. Taj, 136:3 (2009), 7–23
[12] Shabozov M. Sh., Langarshoev M. R., “On the best linear methods and widths values of some classes of analytic functions in the weighted Bergman space”, Dokl. RAN, 450:5 (2013), 518–521 | DOI | Zbl
[13] Korneichuk N. P., Exact constant in the theory of approximation, Nauka, M., 1987, 424 pp. | MR
[14] Taykov L. V., “Diameters of certain classes of analytic functions”, Mat. Zametki, 22:2 (1977), 285–295 | MR | Zbl
[15] Aynulloev N., “Widths of classes of analytic functions in the unit disk”, Geometric problems of function theory and sets, 1986, 91–101
[16] Shabozov M. Sh., Saidusaynov M. S., “The values of n-widths and the best linear method of approximation of some classes of functions in the weighted Bergman space”, Izv. TSU. Natural Science, 2014, no. 3, 40–57
[17] Farkov Yu. A., “On the best linear approximation of holomorphic functions”, Fundam. Prikl. Mat., 19:5 (2014), 185–212
[18] Saidusaynov M. S., “On the values of widths and the best linear methods of approximation in the weighted Bergman space”, Izv. TSU. Natural Science, 2015, no. 3, 91–104