Estimates of short cubic double exponential sums with a long continuous summation
Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 217-231
Voir la notice de l'article provenant de la source Math-Net.Ru
I. M. Vinogradov pioneered the study of short exponential sums with primes. For $k=1$ using his method of estimating sums with primes, he obtained a non-trivial estimate for sums of the form
\begin{align*}
(\alpha ;x,y) = \sum_{x-y\le x} \Lambda(n) e(\alpha
n^k),\quad \alpha=\frac{a}{q}+\lambda,\quad
|\lambda|\le \frac{1}{q\tau},\quad
1\le q\le \tau
\end{align*}
when
$$
\exp(c(\ln \ln x)^2)\ll q \ll x^{1/3},\qquad
y>x^{2/3+\varepsilon},
$$
This estimate is based on “Vinogradov sieve” and for $k=1$ utilizes estimates of short double exponential sums of the form
$$
J_k(\alpha;x,y,M,N)=\sum_{M\le 2M}a(m)\sum_{U\le 2N \atop x-y\le x}b(n)e(\alpha (mn)^k),
$$
where $a(m)$ and $b(n)$ are arbitrary complex-valued functions, $M$, $N$ are positive integers,
$N\le U2N$, $x>x_0$, $y$ are real numbers.
Later, B. Haselgrove, V. Statulyavichus, Pan Cheng-Dong and Pan Cheng-Biao, Zhan Tao obtained a nontrivial estimate for the sum $S_1(\alpha;x,y)$, $y\ge x^{\theta}$, where
$q$ was an arbitrary integer, and successfully proved an asymptotic formula for ternary Goldbach problem with almost equal summands satisfying $|p_i-N/3|\le H$, $ H=N^{\theta}$, respectively when
$$
\theta=\frac{63}{64}+\varepsilon, \qquad \frac{279}{308}+\varepsilon, \qquad \frac{2}{3}+\varepsilon ,\qquad \frac{5}{8}+\varepsilon.
$$
J. Liu and Zhan Tao studied the sum $J_2(\alpha;x,y,M,N)$ and obtained a non-trivial estimate for the sum $S_2(\alpha ;x,y)$ when $y\ge x^{\frac{11}{16}+\varepsilon}$.
This paper is devoted to obtaining non-trivial estimates for the sum $J_3(\alpha;x,y,M,N)$, with a “long” continuous summation over minor arcs.
Bibliography: 12 titles.
Keywords:
Short double exponential sums, nontrivial estimate, estimation method for short exponential sums over primes.
@article{CHEB_2016_17_1_a16,
author = {Z. Kh. Rakhmonov and F. Z. Rakhmonov and B. M. Zamonov},
title = {Estimates of short cubic double exponential sums with a long continuous summation},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {217--231},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a16/}
}
TY - JOUR AU - Z. Kh. Rakhmonov AU - F. Z. Rakhmonov AU - B. M. Zamonov TI - Estimates of short cubic double exponential sums with a long continuous summation JO - Čebyševskij sbornik PY - 2016 SP - 217 EP - 231 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a16/ LA - ru ID - CHEB_2016_17_1_a16 ER -
%0 Journal Article %A Z. Kh. Rakhmonov %A F. Z. Rakhmonov %A B. M. Zamonov %T Estimates of short cubic double exponential sums with a long continuous summation %J Čebyševskij sbornik %D 2016 %P 217-231 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a16/ %G ru %F CHEB_2016_17_1_a16
Z. Kh. Rakhmonov; F. Z. Rakhmonov; B. M. Zamonov. Estimates of short cubic double exponential sums with a long continuous summation. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 217-231. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a16/