Estimates of short cubic double exponential sums with a long continuous summation
Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 217-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

I. M. Vinogradov pioneered the study of short exponential sums with primes. For $k=1$ using his method of estimating sums with primes, he obtained a non-trivial estimate for sums of the form \begin{align*} (\alpha ;x,y) = \sum_{x-y\le x} \Lambda(n) e(\alpha n^k),\quad \alpha=\frac{a}{q}+\lambda,\quad |\lambda|\le \frac{1}{q\tau},\quad 1\le q\le \tau \end{align*} when $$ \exp(c(\ln \ln x)^2)\ll q \ll x^{1/3},\qquad y>x^{2/3+\varepsilon}, $$ This estimate is based on “Vinogradov sieve” and for $k=1$ utilizes estimates of short double exponential sums of the form $$ J_k(\alpha;x,y,M,N)=\sum_{M\le 2M}a(m)\sum_{U\le 2N \atop x-y\le x}b(n)e(\alpha (mn)^k), $$ where $a(m)$ and $b(n)$ are arbitrary complex-valued functions, $M$, $N$ are positive integers, $N\le U2N$, $x>x_0$, $y$ are real numbers. Later, B. Haselgrove, V. Statulyavichus, Pan Cheng-Dong and Pan Cheng-Biao, Zhan Tao obtained a nontrivial estimate for the sum $S_1(\alpha;x,y)$, $y\ge x^{\theta}$, where $q$ was an arbitrary integer, and successfully proved an asymptotic formula for ternary Goldbach problem with almost equal summands satisfying $|p_i-N/3|\le H$, $ H=N^{\theta}$, respectively when $$ \theta=\frac{63}{64}+\varepsilon, \qquad \frac{279}{308}+\varepsilon, \qquad \frac{2}{3}+\varepsilon ,\qquad \frac{5}{8}+\varepsilon. $$ J. Liu and Zhan Tao studied the sum $J_2(\alpha;x,y,M,N)$ and obtained a non-trivial estimate for the sum $S_2(\alpha ;x,y)$ when $y\ge x^{\frac{11}{16}+\varepsilon}$. This paper is devoted to obtaining non-trivial estimates for the sum $J_3(\alpha;x,y,M,N)$, with a “long” continuous summation over minor arcs. Bibliography: 12 titles.
Keywords: Short double exponential sums, nontrivial estimate, estimation method for short exponential sums over primes.
@article{CHEB_2016_17_1_a16,
     author = {Z. Kh. Rakhmonov and F. Z. Rakhmonov and B. M. Zamonov},
     title = {Estimates of short cubic double exponential sums with a long continuous summation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {217--231},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a16/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
AU  - F. Z. Rakhmonov
AU  - B. M. Zamonov
TI  - Estimates of short cubic double exponential sums with a long continuous summation
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 217
EP  - 231
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a16/
LA  - ru
ID  - CHEB_2016_17_1_a16
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%A F. Z. Rakhmonov
%A B. M. Zamonov
%T Estimates of short cubic double exponential sums with a long continuous summation
%J Čebyševskij sbornik
%D 2016
%P 217-231
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a16/
%G ru
%F CHEB_2016_17_1_a16
Z. Kh. Rakhmonov; F. Z. Rakhmonov; B. M. Zamonov. Estimates of short cubic double exponential sums with a long continuous summation. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 217-231. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a16/

[1] Vinogradov I. M., Selected work, Springer-Verlag, Berlin–New York, 1985, 401 pp. | MR

[2] Haselgrove C. B., “Some theorems in the analytic theory of number”, J. London Math. Soc., 26 (1951), 273–277 | DOI | MR | Zbl

[3] Statulyavichus V., “On the representation of odd numbers as the sum of three almost equal prime numbers”, Vilnius, Uchenie trudi universiteta, Ser. mat. fiz. i khim. nauk, 1955, no. 3, 5–23 | MR

[4] Pan Cheng-dong, Pan Cheng-biao, “On estimations of trigonometric sums over primes in short intervals, III”, Chinese Ann. of Math., 2 (1990), 138–147 | MR | Zbl

[5] Zhan T., “On the Representation of large odd integer as a sum three almost equal primes”, Acta Math Sinica, new ser., 7:3 (1991), 135–170 | DOI | MR

[6] Liu J. Y., Zhan T., “Estimation of exponential sums over primes in short intervals, I”, Mh. Math., 127 (1999), 27–41 | DOI | MR | Zbl

[7] Rakhmonov Z. Kh., Rakhmonov F. Z., “Sum of Short Exponential Sums over Prime Numbers”, Doklady Mathematics, 90:3 (2014), 1–2 | DOI | DOI | MR | Zbl

[8] Rakhmonov Z. Kh., Rakhmonov F. Z., “The sum of short double trigonometric sums”, Doklady Akademii nauk Respubliki Tajikistan, 56:11 (2013), 853–860

[9] Rakhmonov F. Z., “Estimate of quadratic trigonometric sums with prime numbers”, Moscow University Mathematics Bulletin, 66:3 (2011), 129–132 | DOI | MR | Zbl

[10] Karatsuba A. A., Basic Analytic Number Theory, Springer-Verlag, Berlin–Heidlberg, 1993, 223 pp. | MR | MR | Zbl

[11] Vinogradov I. M., Special Variants of the Method of Trigonometric Sums, Nauka, M., 1976, 122 pp. | MR

[12] Mardjhanashvili K. K., “An estimate for an arithmetic sum”, Doklady Akad. Nauk SSSR, 22:7 (1939), 391–393