Sums of characters modulo a cubefree at shifted primes
Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 201-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

Vinogradov's method of estimation of exponential sums over primes allowed him to solve the number of arithmetic problems with primes. One of them is a problem of distribution of the values of non-principal character on the sequence of shifted primes. In 1938 he proved that if $q$ is an odd prime, $(l, q)=1$, $\chi (a)$ is non-principal character modulo $q$, then \begin{equation} T(\chi )=\sum_{p\le x}\chi (p-l)\ll x^{1+\varepsilon} \left(\sqrt{\frac{1}{q}+\frac{q}{x}} +x^{-\frac{1}{6}}\right). \tag{IMV} \end{equation} This estimate is non-trivial when $x\gg q^{1+\varepsilon}$ and an asymptotic formula for the the number of quadratic residues (non-residues) modulo $q$ of the form $p-l$, $p\le x$ follows from it. Later in 1953, I. M. Vinogradov obtained a non-trivial estimate of $T(\chi )$ when $x\ge q^{0,75+\varepsilon}$, $q$ is a prime. It was a surprising result. In fact, $T(\chi )$ can be represented as a sum over zeroes of correspondent Dirichlet $L$ — function; So a non-trivial estimate of $T(\chi )$ is obtained only for $x~\ge~q^{1+\varepsilon}$ provided that the extended Riemann hypothesis is true. In 1968 A. A. Karatsuba found a method that allowed him to obtain non-trivial estimate of short sums of characters in finite fields with fixed degree. In 1970 using the modification of his technique coupled with Vinogradov's method he proved that: if $q$ is a prime number, $\chi$ is non-principal character modulo $q$ and $x\ge q^{\frac{1}{2}+\varepsilon}$, then the following estimate is true $$ T(\chi )\ll xq^{-\frac{1}{1024}\varepsilon^2}. $$ In 1985 Z. Kh. Rakhmonov generalized the estimate (IMV) for the case of composite modulo and proved: let $D$ is a sufficiently large positive integer, $\chi$ is a non-principal character modulo $D$, $\chi_q$ is primitive character generated by character $\chi$, then $$ T(\chi )\le x\ln^5x \left(\sqrt{\frac{1}{q}+\frac{q}{x}\tau^2(q_1)} +x^{-\frac{1}{6}}\tau (q_1)\right), \qquad q_1={\genfrac{}{}{0pt}{}{p\backslash D}{p\not\backslash q}}p. $$ If a character $\chi$ coincides with it generating primitive character $\chi_q$, then the last estimate is non-trivial for $x>q(\ln q)^{13}$. In 2010 г. J. B. Friedlander, K. Gong, I. E. Shparlinski showed that a non-trivial estimate of the sum $T(\chi_q )$ exists for composite $q$ when $x$ — length of the sum, is of smaller order than $q$. They proved: for a primitive character $\chi_q$ and an arbitrary $\varepsilon >0$ there exists such $\delta >0$ that for all $x\ge q^{\frac{8}{9}+\varepsilon}$ the following estimate holds: $$ T(\chi_q )\ll xq^{-\delta}. $$ In 2013 Z. Kh. Rakhmonov obtained a non-trivial estimate of $T(\chi_q)$ for the composite modulo $q$ and primitive character $\chi_q$ when $x\ge q^{\frac{5}{6}+\varepsilon}$. In this paper the theorem about the estimate of the sum $T(\chi_q)$ is proved for cubefree modulo $q$. It is non-trivial when $x\ge q^{\frac{5}{6}+\varepsilon}$. Bibliography: 15 titles.
Keywords: Dirichlet character, shifted primes, short sums of characters, exponential sums over primes.
@article{CHEB_2016_17_1_a15,
     author = {Z. Kh. Rakhmonov and Sh. Kh. Mirzorakhimov},
     title = {Sums of characters modulo a cubefree at shifted primes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {201--216},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a15/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
AU  - Sh. Kh. Mirzorakhimov
TI  - Sums of characters modulo a cubefree at shifted primes
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 201
EP  - 216
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a15/
LA  - ru
ID  - CHEB_2016_17_1_a15
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%A Sh. Kh. Mirzorakhimov
%T Sums of characters modulo a cubefree at shifted primes
%J Čebyševskij sbornik
%D 2016
%P 201-216
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a15/
%G ru
%F CHEB_2016_17_1_a15
Z. Kh. Rakhmonov; Sh. Kh. Mirzorakhimov. Sums of characters modulo a cubefree at shifted primes. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 201-216. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a15/

[1] Vinogradov I. M., Selected work, Springer-Verlag, Berlin–New York, 1985, 401 pp. | MR

[2] Vinogradov I. M., “New approach to the estimation of a sum of values of $\chi(p+k)$”, Izvestiya Akad. Nauk SSSR. Ser. Mat., 16 (1952), 197–210 | MR | Zbl

[3] Vinogradov I. M., “Improvement of an estimate for the sum of the values $\chi(p+k)$”, Izvestiya Akad. Nauk SSSR. Ser. Mat., 17 (1953), 285–290 | MR | Zbl

[4] Karatsuba A. A., “On sums of characters with primes”, Sov. Math. Dokl., 11 (1970), 135–137 | MR | Zbl

[5] Karatsuba A. A., “Sums of characters over prime numbers”, Math. USSR-Izv., 4:2 (1970), 303–326 | DOI | MR | MR

[6] Rakhmonov Z. Kh., “On the distribution of values of Dirichlet characters”, Russian Math. Surveys, 41:1 (1986), 237–238 | DOI | MR | Zbl

[7] Rakhmonov Z. Kh., “Estimation of the sum of characters with primes”, Dokl. Akad. Nauk Tadzhik. SSR, 29:1 (1986), 16–20 (in Russian) | MR | Zbl

[8] Rakhmonov Z. Kh., “On the distribution of the values of Dirichlet characters and their applications”, Proc. Steklov Inst. Math., 207, no. 6, 1995, 263–272 | MR | Zbl

[9] Fridlander Dzh. B., Gong K., Shparlinskii I. E., “Character sums over shifted primes”, Math. Notes, 88:3–4 (2010), 585–598 | DOI | DOI | MR | Zbl

[10] Rakhmonov Z. Kh., “Distribution of values of Dirichlet characters in the sequence of shifted primes”, Doklady Akademii nauk Respubliki Tajikistan, 56:1 (2013), 5–9 | Zbl

[11] Rakhmonov Z. Kh., “Distribution of values of Dirichlet characters in the sequence of shifted primes”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:4(2) (2013), 113–117 | Zbl

[12] Rakhmonov Z. Kh., “Sums of characters over prime numbers”, Chebyshevskii Sb., 15:2(50) (2014), 73–100

[13] Burgess D A., “On character sums and $L$-series”, Proc. London Math. Soc., 12:3 (1962), 193–206 | DOI | MR | Zbl

[14] Burgess D A., “On character sums and $L$-series, II”, Proc. London Math. Soc., 13:3 (1963), 524–536 | DOI | MR | Zbl

[15] Mardjhanashvili K. K., “An estimate for an arithmetic sum”, Doklady Akad. Nauk SSSR, 22:7 (1939), 391–393