Self-improvement of $(\theta,p)$ Poincar\'{e} inequality for $p>0$
Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 187-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical Poincaré $(\theta,p)$-inequality on $\mathbb{R}^n$ \begin{equation*} \left(\dfrac{1}{\mu(B)}\int\limits_B \left|f(y)-\dfrac{1}{\mu(B)}\int\limits_Bf\,d\mu\right|^\theta\,d\mu(y)\right)^{1/\theta} \lesssim r_B \left(\dfrac{1}{\mu(B)}\int\limits_{B}|\nabla f|^p\,d\mu\right)^{1/p}, \end{equation*} ($r_B$ is the radius of ball $B\subset \mathbb{R}^n$) has a self-improvement property, that is $(1,p)$-inequality, $1$, implies the «stronger» $(q,p)$-inequality (Sobolev-Poincaré), where $1/q=1/p-1/n$ (inequality $A\lesssim B$ means that $A\le cB$ with some inessential constant $c$). Such effect was investigated in a series of papers for the inequalities of more general type \begin{equation*} \left(\dfrac{1}{\mu(B)}\int\limits_B |f(y)-S_Bf|^\theta\,d\mu(y)\right)^{1/\theta} \lesssim\eta(r_B) \left(\dfrac{1}{\mu(B)}\int\limits_{\sigma B}g^p\,d\mu\right)^{1/p} \end{equation*} for functions on metric measure spaces. Here $f\in L^{\theta}_{\mathrm{loc}}$, $g\in L^{p}_{\mathrm{loc}}$, and $S_Bf$ is some number depending on the ball $B$ and on the function $f$, $\eta$ is some positive increasing function, $\sigma \ge 1$. Usually mean value of the function $f$ on a ball $B$ is chosen as $S_Bf$, and the case $p\ge 1$ is considered. We investigate self-improvement property for such inequalities on quasimetric measure spaces with doubling condition with parameter $\gamma>0$. Unlike previous papers on this topic we consider the case $\theta,p>0$. In this case functions are not required to be summable, and we take $S_Bf=I^{(\theta)}_Bf$. Here $I^{(\theta)}_Bf$ is the best approximation of the function $f$ in $L^{\theta}(B)$ by constants. We prove that if $\eta(t)t^{-\alpha}$ increases with some $\alpha>0$, then for $0$ and $\theta>0$ $(\theta,p)$-inequality Poincaré implies $(q,p)$-inequality with $1/q>1/p-\gamma/\alpha$. If $p\ge \gamma(\gamma+\alpha)^{-1}$ (then the function $f$ is locally integrable) then it implies also $(q,p)$-inequality with mean value instead of the best approximations $I^{(\theta)}_Bf$. Also we consider the cases $\alpha p=\gamma$ and $\alpha p>\gamma$. If $\alpha p=\gamma$, then $(q,p)$-inequality with any $q>0$ follows from Poincaré $(\theta,p)$-inequality and moreover some exponential Trudinger type inequality is true. If $\alpha p>\gamma$ then Poincaré $(\theta,p)$-inequality implies the inequality \begin{equation*} |f(x)-f(y)|\lesssim \eta(d(x,y))[d(x,y)]^{-\gamma/p}\lesssim[d(x,y)]^{\alpha-\gamma/p} \end{equation*} for almost all $x$ and $y$ from any fixed ball $B$ ($\lesssim$ does depend on $B$). Bibliography: 15 titles.
Keywords: metric measure space, doubling condition, Poincaré inequality.
@article{CHEB_2016_17_1_a14,
     author = {A. I. Porabkovich},
     title = {Self-improvement of  $(\theta,p)$ {Poincar\'{e}} inequality for $p>0$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {187--200},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a14/}
}
TY  - JOUR
AU  - A. I. Porabkovich
TI  - Self-improvement of  $(\theta,p)$ Poincar\'{e} inequality for $p>0$
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 187
EP  - 200
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a14/
LA  - ru
ID  - CHEB_2016_17_1_a14
ER  - 
%0 Journal Article
%A A. I. Porabkovich
%T Self-improvement of  $(\theta,p)$ Poincar\'{e} inequality for $p>0$
%J Čebyševskij sbornik
%D 2016
%P 187-200
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a14/
%G ru
%F CHEB_2016_17_1_a14
A. I. Porabkovich. Self-improvement of  $(\theta,p)$ Poincar\'{e} inequality for $p>0$. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 187-200. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a14/

[1] P. Hajłasz, P. Koskela, “Sobolev met Poincaré”, Memoirs of Amer. Math. Soc., 145, 2000, 1–115 | MR

[2] Ivanishko I. A., Krotov V. G., “Generalized Poincaré-Sobolev inequality on metric spaces”, Inst. of Math. of NAS of Belarus, 14:1 (2006), 51–61

[3] Ignat'eva E. V., “Sobolev–Poincaré-type inequality on metric spaces in terms of sharp-maximal functions”, Math. Notes, 81:1 (2007), 121–125 | DOI | DOI | MR | Zbl

[4] V. G. Krotov, “Maximal Functions Measuring Smoothness”, Recent Advances in Harmonic Analysis and Applications, In Honor of Konstantin Oskolkov, Proc. in Math. and Stat., 25, 2013, 197–223 | MR | Zbl

[5] A. P. Calderón, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 167–186 | MR

[6] A. P. Calderón, R. Scott, “Sobolev type inequalities for $p > 0$”, Studia Math., 62 (1978), 75–92 | MR | Zbl

[7] R. DeVore, R. Sharpley, “Maximal functions measuring local smoothness”, Memoirs of the Amer. Math. Soc., 47, 1984, 1–115 | DOI | MR

[8] P. Hajłasz, “Sobolev spaces on an arbitrary metric spaces”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl

[9] R. R. Coifman, G. Weiss, “Analyse harmonique non-commutative sur certain espaces homogenés”, Lecture Notes in Math., 242, 1971, 1–176 | DOI | MR

[10] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, Berlin, 2001 | MR | Zbl

[11] E. Stein, Singular integrals and differentiability properties of functions, Prinston Univ. Press, 1970 | MR | Zbl

[12] Krotov V. G., “Quantitative form of the Luzin $C$-property”, Ukr. Math. J., 62:3 (2010), 441–451 | DOI | MR | Zbl | Zbl

[13] Krotov V. G., “Criteria for compactness in $L^p$-spaces, $p\ge0$”, Sbornik: Mathematics, 303:7 (2012), 1045–1064 | DOI | DOI | MR

[14] Krotov V. G., Porabkovich A. I., “Estimates of $L^p$-oscillations of functions for $p>0$”, Math. Notes, 97:3 (2015), 384–395 | DOI | DOI | MR | Zbl

[15] N. Trudinger, “On embedding into Orlicz spaces and some applications”, J. Math. Mech., 17 (1967), 473–483 | MR | Zbl