Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_1_a14, author = {A. I. Porabkovich}, title = {Self-improvement of $(\theta,p)$ {Poincar\'{e}} inequality for $p>0$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {187--200}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a14/} }
A. I. Porabkovich. Self-improvement of $(\theta,p)$ Poincar\'{e} inequality for $p>0$. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 187-200. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a14/
[1] P. Hajłasz, P. Koskela, “Sobolev met Poincaré”, Memoirs of Amer. Math. Soc., 145, 2000, 1–115 | MR
[2] Ivanishko I. A., Krotov V. G., “Generalized Poincaré-Sobolev inequality on metric spaces”, Inst. of Math. of NAS of Belarus, 14:1 (2006), 51–61
[3] Ignat'eva E. V., “Sobolev–Poincaré-type inequality on metric spaces in terms of sharp-maximal functions”, Math. Notes, 81:1 (2007), 121–125 | DOI | DOI | MR | Zbl
[4] V. G. Krotov, “Maximal Functions Measuring Smoothness”, Recent Advances in Harmonic Analysis and Applications, In Honor of Konstantin Oskolkov, Proc. in Math. and Stat., 25, 2013, 197–223 | MR | Zbl
[5] A. P. Calderón, “Estimates for singular integral operators in terms of maximal functions”, Studia Math., 44 (1972), 167–186 | MR
[6] A. P. Calderón, R. Scott, “Sobolev type inequalities for $p > 0$”, Studia Math., 62 (1978), 75–92 | MR | Zbl
[7] R. DeVore, R. Sharpley, “Maximal functions measuring local smoothness”, Memoirs of the Amer. Math. Soc., 47, 1984, 1–115 | DOI | MR
[8] P. Hajłasz, “Sobolev spaces on an arbitrary metric spaces”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl
[9] R. R. Coifman, G. Weiss, “Analyse harmonique non-commutative sur certain espaces homogenés”, Lecture Notes in Math., 242, 1971, 1–176 | DOI | MR
[10] J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, Berlin, 2001 | MR | Zbl
[11] E. Stein, Singular integrals and differentiability properties of functions, Prinston Univ. Press, 1970 | MR | Zbl
[12] Krotov V. G., “Quantitative form of the Luzin $C$-property”, Ukr. Math. J., 62:3 (2010), 441–451 | DOI | MR | Zbl | Zbl
[13] Krotov V. G., “Criteria for compactness in $L^p$-spaces, $p\ge0$”, Sbornik: Mathematics, 303:7 (2012), 1045–1064 | DOI | DOI | MR
[14] Krotov V. G., Porabkovich A. I., “Estimates of $L^p$-oscillations of functions for $p>0$”, Math. Notes, 97:3 (2015), 384–395 | DOI | DOI | MR | Zbl
[15] N. Trudinger, “On embedding into Orlicz spaces and some applications”, J. Math. Mech., 17 (1967), 473–483 | MR | Zbl