Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_1_a13, author = {U. M. Pachev}, title = {Ergodic properties of flows for integral points on some hyperboloids in connection with the hypothesis for the {Dirichlet} $L${\textendash}function}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {171--186}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a13/} }
TY - JOUR AU - U. M. Pachev TI - Ergodic properties of flows for integral points on some hyperboloids in connection with the hypothesis for the Dirichlet $L$–function JO - Čebyševskij sbornik PY - 2016 SP - 171 EP - 186 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a13/ LA - ru ID - CHEB_2016_17_1_a13 ER -
%0 Journal Article %A U. M. Pachev %T Ergodic properties of flows for integral points on some hyperboloids in connection with the hypothesis for the Dirichlet $L$–function %J Čebyševskij sbornik %D 2016 %P 171-186 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a13/ %G ru %F CHEB_2016_17_1_a13
U. M. Pachev. Ergodic properties of flows for integral points on some hyperboloids in connection with the hypothesis for the Dirichlet $L$–function. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 171-186. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a13/
[1] Linnik Yu. V., “On the representation of large numbers by positive ternary quadratic forms”, Izv. AN USSR. Ser. mat., 4:4/5 (1940), 363–402 | MR
[2] Linnik Yu. V., Ergodic properties of algebraic fields, L., 1967 | MR
[3] Malyshev A. V., Pachev U. M., “Representation of integers by positive ternary quadratic forms (a new modification of the discrete ergodic method)”, Zap. Nauchn. Semin. LOMI, 82, 1979, 33–87 | MR | Zbl
[4] Golubeva E. P., “On the representation of large numbers by ternary quadratic forms”, Dokl. Akad. Nauk. SSSR, 191:3 (1970), 519–521 | MR | Zbl
[5] Golubeva E. P., “Asymptotic behaviour of the number of integer points on certain ellipsoids”, Mat. Zametki, 11:6 (1972), 625–634 | MR | Zbl
[6] Vinogradov A. I., “The general Hardy–Littlwood equation”, Mat. Zametki, 1:2 (1967), 189–197 | MR
[7] Linnik Yu. V., The dispersion method in binary additive problems, L., 1961, 208 pp. | MR
[8] Malyshev A. V., Shirokov B. M., “A new proof of a key lemma of the discrete ergodic method of second–order vector matrices”, Vestn. Lelingr. univ., 24:2 (1991), 39–45 | MR | Zbl
[9] Duke W., “Hyperbolic distribution problems and half-integral weight Maas forms”, Invent. Math., 92 (1988), 78–90 | DOI | MR
[10] Iwaniec H., “Fourier coefficients of modular forms of half-integral weight”, Invent. Math., 87 (1987), 385–401 | DOI | MR | Zbl
[11] Skubenko B. F., “Asymptotic distribution of integral points on hyperboloids of one sheet and ergodic theorems”, Izv. AN USSR. Ser. mat., 26:5 (1962), 721–752 | MR | Zbl
[12] Malyshev A. V., “On the representation of integers by positive quadratic forms”, Trudy Mat. Inst. Steklov., 65, Acad. Sci. USSR, M., 1962, 3–212 | MR | Zbl
[13] Malyshev A. V., Pachev U. M., “Estimates of the remainder term in ergodic theorems for integral points on some two-sheeted hyperboloids”, Analytic number theory, Petrosavodsk, 1986, 46–51 | MR
[14] Malyshev A. V., Pachev U. M., “On the arithmetic of matrices of order 2”, Zap. Nauchn. Semin. LOMI, 93, 1980, 41–86 | MR | Zbl
[15] Pachev U. M., “On the distribution of integer points on certain two-sheeted hyperboloids”, Zap. Nauchn. Semin. LOMI, 93, 1980, 87–141 | MR | Zbl
[16] Malyshev A. V., Ngueyen Ngror Khooy, “Distribution of integral points on some hyperboloids of one sheet”, Zap. Nauchn. Semin. LOMI, 121, 1983, 83–93 | MR | Zbl
[17] Belova N. N., Malyshev A. V., “Ergodic properties of integral points on ellipsoids of genus $G_{[\Omega, 1]}$”, Zap. Nauchn. Semin. LOMI, 106, 1981, 17–51 | MR | Zbl