Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_1_a13, author = {U. M. Pachev}, title = {Ergodic properties of flows for integral points on some hyperboloids in connection with the hypothesis for the {Dirichlet} $L${\textendash}function}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {171--186}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a13/} }
TY - JOUR AU - U. M. Pachev TI - Ergodic properties of flows for integral points on some hyperboloids in connection with the hypothesis for the Dirichlet $L$–function JO - Čebyševskij sbornik PY - 2016 SP - 171 EP - 186 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a13/ LA - ru ID - CHEB_2016_17_1_a13 ER -
%0 Journal Article %A U. M. Pachev %T Ergodic properties of flows for integral points on some hyperboloids in connection with the hypothesis for the Dirichlet $L$–function %J Čebyševskij sbornik %D 2016 %P 171-186 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a13/ %G ru %F CHEB_2016_17_1_a13
U. M. Pachev. Ergodic properties of flows for integral points on some hyperboloids in connection with the hypothesis for the Dirichlet $L$–function. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 171-186. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a13/