Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2016_17_1_a12, author = {A. A. Osipova}, title = {Convex rhombic dodecahedron and parametric {BR-sets}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {160--170}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a12/} }
A. A. Osipova. Convex rhombic dodecahedron and parametric BR-sets. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 160-170. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a12/
[1] Hecke E., “Eber Analytische Funktionen und die Verteilung von Zahlen mod. eins”, Math. Sem. Hamburg. Univ., 5 (1921), 54–76
[2] Erdös P., “Problems and results on diophantine approximation”, Comp. Math., 16 (1964), 52–65 | MR | Zbl
[3] Kesten H., “On a conjecture of Erdös and Szüsz related to uniform distribution mod 1”, Acta Arithmetica, 12 (1966), 193–212 | MR | Zbl
[4] Zhuravlev V. G., “One-dimensional Fibonacci tilings”, Izvestiya: Mathematics, 71:2 (2007), 89–122 | DOI | MR | Zbl
[5] Shutov A. V., “Optimum estimates in the problem of the distribution of fractional parts of the sequence $n\alpha$”, Vestnik SamGU. Yestestvennonauchnaya seriya, 5:3 (2007), 112–121
[6] Szüsz R., “Über die Verteilung der Vielfachen einer komplexen Zahl nach dem Modul des Einheitsquadrats”, Acta Math. Acad. Sci. Hungar., 1954, no. 5, 35–39 | DOI | MR | Zbl
[7] Zhuravlev V. G., “Rauzy tilings and bounded remainder sets on the torus”, Journal of Mathematical Sciences, 322 (2005), 83–106 | Zbl
[8] Zhuravlev V. G., “Exchanged toric developments and bounded remainder sets”, Journal of Mathematical Sciences, 392 (2011), 95–145
[9] Zhuravlev V. G., “Multidimensional Hecke theorem on the distribution of fractional parts”, St. Petersburg Mathematical Journal, 24:1 (2012), 1–33
[10] Abrosimova A. A., “Bounded remainder sets on a two-dimensional torus”, Chebyshevskiy sbornik, 12:4(40) (2011), 15–23 | MR
[11] Abrosimova A. A., “Average values for deviation distribution of points on the torus”, Belgorod State University Scientific bulletin. Mathematics Physics, 5(124):26 (2012), 5–11
[12] Abrosimova A. A., “Multiplication of toric developments and constructing of bounded remainder sets”, Uchenye zapiski Orlovskogo Gosudarstvennogo Universiteta. Seriya: Yestestvennyye, tekhnicheskiye i meditsinskiye nauki, 2012, no. 6/2, 30–37 | MR
[13] Abrosimova A. A., “Fractal bounded remainder sets”, Matematicheskoye modelirovaniye fraktal'nykh protsessov, rodstvennyye problemy analiza i informatiki" (II Int. Conf. Proc. of Young Scientists "Mathematical Modeling of Fractal Processes of Analysis and Informatics, Materialy II Mezhdunarodnoy konferentsii molodykh uchenykh, Nalchik, 2012, 18–21 | MR
[14] Abrosimova A. A., Blinov D. A., Polyakova T. V., “Optimization of boundaries of remainder for bounded remaider sets on two-dimensional torus”, Chebyshevskiy sbornik, 14:1(45) (2013), 9–17 | MR | Zbl
[15] Abrosimova A. A., “Boundaries of deviations for three-dimensional bounded remainder sets”, Belgorod State University Scientific bulletin. Mathematics Physics, 19(162):32 (2013), 5–21 | MR
[16] Abrosimova A. A., Blinov D. A., “Boundaries optimization of two-dimensional bounded remainder sets”, Belgorod State University Scientific bulletin. Mathematics Physics, 26(169):33 (2013), 5–13 | MR
[17] Abrosimova A. A., “BR-sets”, Chebyshevskiy sbornik, 16:2(54) (2015), 8–22 | MR | Zbl
[18] Weyl H., “Über die Gibbs'sche Erscheinung und verwandte Konvergenzph änomene”, Rendicontidel Circolo Mathematico di Palermo, 30 (1910), 377–407 | DOI | Zbl
[19] Knuth D., “Ecient balanced codes”, IEEE Trans. Inf. Theory, IT-32:1 (1986), 51–53 | DOI | MR | Zbl
[20] Altman E., Gaujual B., Hordijk A., “Balanced Sequences and Optimal Routing”, Journal of Association for Computing Machinery, 2000, no. 4, 752–775 | DOI | MR | Zbl
[21] Vuillon L., “Balanced words”, Bull. Belg. Math. Soc. Simon Stevin, 2003, no. 10, 787–805 | MR | Zbl
[22] Heinis A., “Languages under substitutions and balanced words”, J. de Theories des Nombres de Bordeaux, 2004, no. 16, 151–172 | DOI | MR | Zbl