A discrete universality theorem for periodic Hurwitz zeta-functions
Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 148-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1975, Sergei Mikhailovich Voronin discovered the universality of the Riemann zeta-function $\zeta(s)$, $s=\sigma+it$ , on the approximation of a wide class of analytic functions by shifts $\zeta(s+i\tau), \tau \in \mathbb{R}$. Later, it turned out that also some other zeta-functions are universal in the Voronin sense. If $\tau$ takes values from a certain descrete set, then the universality is called discrete. In the present paper, the discrete universality of periodic Hurwitz zeta-functions is considered. The periodic Hurwitz zeta-function $\zeta(s,\alpha;\mathfrak{a})$ is defined by the series with terms $a_m(m+\alpha)^{-s}$, where $0\alpha\leq1$ is a fixed number, and $\mathfrak{a}=\{a_m\}$ is a periodic sequence of complex numbers. It is proved that a wide class of analytic functions can be approximated by shifts $\zeta(s+ihk^{\beta_1} \log^{\beta_2}k, \alpha; \mathfrak{a})$ with $k=2,3,\dots$, where $h>0$ and $0\beta_11$, $\beta_2>0$ are fixed numbers, and the set $\{ \log(m+\alpha): m =0,1,2 \}$ is linearly independent over the field of rational numbers. It is obtained that the set of such $k$ has a positive lower density. For the proof, properties of uniformly distributed modulo 1 sequences of real numbers are applied. Bibliography: 15 titles.
Keywords: periodic Hurwitz zeta-function, space of analytic functions, limit theorem, universality.
@article{CHEB_2016_17_1_a11,
     author = {A. Laurin\v{c}ikas and D. Mokhov},
     title = {A discrete universality theorem for periodic {Hurwitz} zeta-functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {148--159},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a11/}
}
TY  - JOUR
AU  - A. Laurinčikas
AU  - D. Mokhov
TI  - A discrete universality theorem for periodic Hurwitz zeta-functions
JO  - Čebyševskij sbornik
PY  - 2016
SP  - 148
EP  - 159
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a11/
LA  - en
ID  - CHEB_2016_17_1_a11
ER  - 
%0 Journal Article
%A A. Laurinčikas
%A D. Mokhov
%T A discrete universality theorem for periodic Hurwitz zeta-functions
%J Čebyševskij sbornik
%D 2016
%P 148-159
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a11/
%G en
%F CHEB_2016_17_1_a11
A. Laurinčikas; D. Mokhov. A discrete universality theorem for periodic Hurwitz zeta-functions. Čebyševskij sbornik, Tome 17 (2016) no. 1, pp. 148-159. http://geodesic.mathdoc.fr/item/CHEB_2016_17_1_a11/

[1] Billingsley P., Convergence of Probability Measures, Wiley, New York, 1968 | MR | Zbl

[2] Javtokas A., Laurinčikas A., “On the periodic Hurwitz zeta-fucntion”, Hardy-Ramanujan J., 29 (2006), 18–36 | MR | Zbl

[3] Javtokas A., Laurinčikas A., “Universality of the periodic Hurwitz zeta-function”, Integral Transforms Spec. Funct., 17:10 (2006), 711–722 | DOI | MR | Zbl

[4] Heyer H., Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | Zbl

[5] Kuipers L., Niederreiter H., Uniform Distribution of Sequences, Pure and Applied Mathematics, Wiley-Interscience, New York–London–Sydney, 1974 ; Keipers L., Niderreiter G., Ravnomernoe raspredelenie posledovatelnostei, Nauka, M., 1985 | MR | Zbl | MR

[6] Karatsuba A. A., Voronin S. M., The Riemann zeta-function, Walter de Gruyter, Berlin, 1992 ; Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR | MR

[7] Laurinčikas A., “The joint universality for periodic Hurwitz zeta-functions”, Analysis (Munich), 26:3 (2006), 419–428 | MR | Zbl

[8] Laurinčikas A., Limit theorems for Riemann zeta-function, Kluwer, Dordrecht–Boston–London, 1996 | MR

[9] Laurinčikas A., Garunkštis R., The Lerch zeta-function, Kluwer, Dordrecht–Boston–London, 2002 | MR | Zbl

[10] Laurinčikas A., Macaitienė R., “The discrete universality of the periodic Hurwitz zeta-function”, Integral Transforms Spec. Funct., 20 (2009), 673–686 | DOI | MR | Zbl

[11] Laurinčikas A., Macaitienė R., Mochov D., Šiaučiūnas D., “On universality of certain zeta-functions”, Izv. Saratov. univ., ser. Matem., Mekhan. Inform., 2013, 67–72 | Zbl

[12] Mergelyan S. N., “Uniform approximations to functions of a complex variable”, Usp. Matem. Nauk., 7:2 (1952), 31–122 (Russian) ; Amer. Math. Trans., 101 (1954) [Мергелян С. Н., “Равномерные приближения функций комплексного переменного”, УМН, 7:2 (1952), 31–122 ] | MR | Zbl

[13] Mincevič A., Mochov D., “On the discrete universality of the periodic Hurwitz zeta-function”, Šiauliai Math. Semin., 10 (2015), 81–89

[14] Montgomery H. L., Topics in Multiplicative Number Theory, Lecture Notes in Math., 227, Springer, Berlin, 1971 | DOI | MR | Zbl

[15] Math. USSR Izv., 9 (1975), 443–453 | DOI | MR | Zbl