Associative rings on vector groups
Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 188-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

An abelian group is called semisimple if it is the additive group of a semisimple ring. R. A. Beaumont and D. A. Lawver have formulated the description problem for semisimple groups. We consider vector semisimple groups in the present paper. Vector groups are direct products $\prod\limits_{i\in I}R_i$ of torsion free abelian groups $R_i\, (i\in I)$ of rank 1. The semisimple vector groups $\prod\limits_{i\in I} R_i$ are described in the present paper in the case where $I$ is a not greater than countable set. A multiplication on an abelian group $G$ is a homomorphism $\mu\colon G\otimes G\rightarrow G$, we denote it as $\mu(g_1\otimes g_2)=g_1\times g_2$ for $g_1, g_2\in G$. The group $G$ with a multiplication $\times$ is called the ring on the group $G$ and it is denoted as $(G,\times)$. It is shown that every multiplication on a direct product of torsion free rank-1 groups is determined by its restriction on the direct sum of these groups. In particular, the following statement takes place. Lemma 3. Let $I$ be a not greater than countable set, $G=\prod\limits_{i\in I}R_i$ and $S=\bigoplus\limits_{i\in I} R_i$. Let $\times$ be a multiplication on the group $G$. If the restriction of this multiplication on $S$ is zero, then the multiplication itself is zero. Let $\prod\limits_{i\in I}R_i$ be a vector group. We use the following notations: $t(R_i)$ is the type of the group $R_i$, $I_0$ is the set of indices $i\in I$ such that $t(R_i)$ is an idempotent type with an infinite number of zero components. If $k\in I$, then $I_0(k)$ is the set of indices $i\in I_0$ such that $t(R_i)\geq t(R_k)$. Theorem 1. Let $I$ be a not greater than countable set. A reduced vector group $\prod\limits_{i\in I} R_i$ is semisimple if and only if 1) there are no groups $R_i\, (i\in I)$ of an idempotent type, where the number of zero components is finite; 2) the set $I_0(k)$ is infinite for every group $R_k$ of the not idempotent type. Note that the set of types of groups $R_i\,(i\in I)$ is an invariant of the group $G=\prod\limits_{i\in I} R_i$, if $I$ is a not greater than countable set. Therefore, this description doesn't depend on the decomposition of the group $G$ into a direct product of rank-1 groups. Bibliography: 17 titles.
Keywords: abelian group, vector group, sevisimple associative ring.
@article{CHEB_2015_16_4_a9,
     author = {E. I. Kompantseva},
     title = {Associative rings on vector groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {188--199},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a9/}
}
TY  - JOUR
AU  - E. I. Kompantseva
TI  - Associative rings on vector groups
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 188
EP  - 199
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a9/
LA  - ru
ID  - CHEB_2015_16_4_a9
ER  - 
%0 Journal Article
%A E. I. Kompantseva
%T Associative rings on vector groups
%J Čebyševskij sbornik
%D 2015
%P 188-199
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a9/
%G ru
%F CHEB_2015_16_4_a9
E. I. Kompantseva. Associative rings on vector groups. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 188-199. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a9/

[1] Kompantseva E. I., “Semisimple rings on completely decomposable abelian groups”, J. of Math. Sciences, 154:3 (2009), 324–332 | DOI | MR

[2] Kompantseva E. I., “Torsion free rings”, J. of Math. Sciences, 171:2 (2010), 213–247 | DOI | MR | Zbl

[3] Beamont R. A., Lawver D. A., “Strongly semisimple abelian groups”, Publ. J. Math., 53:2 (1974), 327–336 | MR

[4] Beaumont R. A., Pierce R. S., “Torsion free rings”, Ill. J. Math., 5 (1961), 61–98 | MR | Zbl

[5] Gardner B. J., “Radicals of abelian groups and associative rings”, Acta Math. Hung., 24 (1973), 259–268 | DOI | MR

[6] Gardner B. J., Jackett D. R., “Rings on certain classes of torsion free abelian groups”, Comment. Math. Univ. Carol., 17 (1976), 493–506 | MR | Zbl

[7] Feigelstock S., “On groups satisfying ring properties”, Comment. Math. Univ. Saneti Pauli, 25 (1976), 81–87 | MR | Zbl

[8] Feigelstosk S., “The additive groups of subdirectly irreducible rings”, Bull. Aust. Math. Soc., 20 (1979), 164–170 | MR

[9] Eclof P. C., Mez H. C., “Additive groups of existentially closed rings”, Abelian Groups and Modules, Proceeding of the Udine conference, Springer-Verlag, Vienna–N. York, 1984, 243–252 | MR

[10] Mishina A. P., “On the direct summands of complete direct sims of torson free abelian group of rank 1”, Sibirskiy matem. zhurnal, 1962, no. 3, 244–249 | MR | Zbl

[11] Mishina A. P., “The separability of complete direct sums of torson free abelian groups of rank 1”, Matem. sb., 57 (1962), 375–383 | MR | Zbl

[12] Los J., “On the complete direct sum of coutable abelian groups”, Publ. Math. Debrecen, 3 (1954), 269–272 | MR | Zbl

[13] Fuchs L., Infinite Abelian Groups, v. 1, Academic Press, New York–London, 1971, 335 pp.

[14] Fuchs L., Infinite Abelian Groups, v. 2, Academic Press, New York–London, 1973, 416 pp. | MR | Zbl

[15] Jacobson N., Structure of rings, Amer. Math. Soc., Providence, R.I., 1956 | Zbl

[16] Sasiada E., “On the isomorphism of decompositions of torson free abelian groups into complete direct sums of groups of rank one”, Bull. Acad. Polon. Sci., 7 (1959), 145–149 | MR | Zbl

[17] Wiskless W. J., “Abelian group which admit only nilpotent multiplications”, Pasif. J. Math., 40:1 (1972), 251–259 | DOI | MR