Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_4_a8, author = {V. S. Zhgoon}, title = {Little {Weyl} groups and variety of degenerate horospheres}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {164--187}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a8/} }
V. S. Zhgoon. Little Weyl groups and variety of degenerate horospheres. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 164-187. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a8/
[1] Berstein I. N., Gelfand I. M., Gelfand S. I., “Schubert cells and cohomology of the spaces $G/P$”, Russian Math. Surveys, 171:37 (3) (1973), 3–26 | MR
[2] Brion M., “The cone of effective one-cycles of certain G-varieties”, A Tribute to C. S. Seshadri, Hindustan Book Agency, 2003, 180–198 | MR
[3] Brion M., Luna D., Vust Th., “Espaces homogènes sphériques”, Invent. Math., 84 (1986), 617–632 | DOI | MR | Zbl
[4] McGovern W. M., “The adjoint representation and adjoint action”, Algebraic Quotients. Torus Actions and Cohomology. The Adjoint Representation and the Adjoint Action, Encyclopaedia of Mathematical Sciences, 131, Springer-Verlag, 2002 | MR | Zbl
[5] Grosshans F. D., “Constructing invariant polynomials via Tchirnhaus transformations”, Invariant theory, Lecture notes in Math., 1278, Springer, Berlin, 1987, 95–102 | DOI | MR
[6] Hartshorne R., Algebraic geometry, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | Zbl
[7] Humphreys J. E., Linear algebraic groups, Springer-Verlag, New York–Heidelberg–Berlin, 1975 | MR | Zbl
[8] Knop F., Kraft H., Vust T., “The Picard group of a G-variety”, Algebraische Transformationsgruppen und Invariantentheorie, DMV-Seminar, 13, Birkhauser Verlag, Basel–Boston, 1989, 77–88 | MR
[9] Knop F., “Weylgruppe und Momentabbildung”, Invent. Math., 99 (1990), 1–23 | DOI | MR | Zbl
[10] Knop F., “Uber Bewertungen, welche unter einer reduktiven Gruppe invariant sind”, Math. Ann., 295 (1993), 333–363 | DOI | MR | Zbl
[11] Knop F., “The asymptotic behavior of invariant collective motion”, Invent. math., 116 (1994), 309–328 | DOI | MR | Zbl
[12] Knop F., “A Harish-Chandra Homomorphism for Reductive Group Actions”, Annals of Mathematics, Series II, 140 (1994), 253–288 | DOI | MR | Zbl
[13] Knop F., “On the Set of Orbits for a Borel Subgroup”, Commentarii Mathematici Helvetici, 70 (1995), 285–309 | DOI | MR | Zbl
[14] Kraft H., Geometrishe Methoden in der Invariantentheorie, Aspects of Mathematics, Friedr. Vieweg Sohn, Braunschweig, 1984 | MR
[15] Luna D., “Grosses cellules pour les varietes spheriques”, Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., 9, Cambridge Univ. Press, Cambridge, 1997, 267–280 | MR | Zbl
[16] Popov V. L., “Contractions of the actions of reductive algebraic groups”, Mat. Sb., 130:3 (1986), 310–334 | MR | Zbl
[17] Springer T. A., Linear Algebraic Groups, Progress in Mathematics, 2nd ed., Springer, 1998 | MR
[18] Timashev D. A., “Equivariant symplectic geometry of cotangent bundles, II”, Moscow Math. J., 6:2 (2006), 389–404 | MR | Zbl
[19] Vinberg E. B., “Equivariant symplectic geometry of cotangent bundles”, Moscow Math. J., 1:2 (2001), 287–299 | MR | Zbl
[20] Vinberg E. B., Popov V. L., Invariant theory. Algebraic geometry IV, Encyclopaedia of Mathematical Sciences, 55, Springer-Verlag, Berlin, 1994 | MR
[21] Zhgoon V. S., “On the Local Structure Theorem and Equivariant Geometry of Cotangent Bundles”, Journal of Lie Theory, 23:3 (2013), 607–638 | MR | Zbl