Hyperbolic zeta function of lattice over quadratic field
Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 100-149

Voir la notice de l'article provenant de la source Math-Net.Ru

This work consists of two main parts. In the first part, which presents the introduction, given a fairly comprehensive overview of the theory of the hyperbolic Zeta-function of lattices. Unlike earlier reviews is that, firstly, most of the results of the General theory particularized to two-dimensional case. This is done because the main goal of this lattice is quadratic fields. And these lattices are two-dimensional. Secondly, the first explicit form of the functional equation for hyperbolic Zeta-function of one and two diagonal lattices. In the second part we investigate the behavior of the hyperbolic Zeta-function of the lattice $\Lambda(t)$ of the quadratic field when the growth parameter $t$. For applications of the theory of hyperbolic Zeta-function lattices to estimate the error of the approximate integration on the class of $E_s^\alpha$ by using generalized parallelepipedal nets with weights it is important to have assessment through growing the determinant of the lattice. In this work, we derived a new asymptotic formula for the hyperbolic Zeta function lattices of quadratic fields. The peculiarity of this formula is that it has a main two-term member and remaining a member with the assessment of incoming constants. In this formula more specific correlation between the hyperbolic Zeta function of lattices of quadratic fields and quadratic field characteristics as: the Zeta function of the Dedekind principal ideals of a quadratic field, the derivative of the Zeta-function of Dedekind principal ideals of a quadratic field, quadratic field by the regulator and the fundamental unit of the quadratic field. Bibliography: 31 titles.
Keywords: lattice, hyperbolic zeta function of lattice, net, hyperbolic zeta function of net, quadrature formula, parallelepiped net, method of optimal coefficients.
@article{CHEB_2015_16_4_a6,
     author = {N. M. Dobrovol'skii and N. N. Dobrovol'skii and V. N. Soboleva and D. K. Sobolev and E. I. Yushina},
     title = {Hyperbolic zeta function of lattice over quadratic field},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {100--149},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a6/}
}
TY  - JOUR
AU  - N. M. Dobrovol'skii
AU  - N. N. Dobrovol'skii
AU  - V. N. Soboleva
AU  - D. K. Sobolev
AU  - E. I. Yushina
TI  - Hyperbolic zeta function of lattice over quadratic field
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 100
EP  - 149
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a6/
LA  - ru
ID  - CHEB_2015_16_4_a6
ER  - 
%0 Journal Article
%A N. M. Dobrovol'skii
%A N. N. Dobrovol'skii
%A V. N. Soboleva
%A D. K. Sobolev
%A E. I. Yushina
%T Hyperbolic zeta function of lattice over quadratic field
%J Čebyševskij sbornik
%D 2015
%P 100-149
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a6/
%G ru
%F CHEB_2015_16_4_a6
N. M. Dobrovol'skii; N. N. Dobrovol'skii; V. N. Soboleva; D. K. Sobolev; E. I. Yushina. Hyperbolic zeta function of lattice over quadratic field. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 100-149. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a6/