Hyperbolic zeta function of lattice over quadratic field
Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 100-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work consists of two main parts. In the first part, which presents the introduction, given a fairly comprehensive overview of the theory of the hyperbolic Zeta-function of lattices. Unlike earlier reviews is that, firstly, most of the results of the General theory particularized to two-dimensional case. This is done because the main goal of this lattice is quadratic fields. And these lattices are two-dimensional. Secondly, the first explicit form of the functional equation for hyperbolic Zeta-function of one and two diagonal lattices. In the second part we investigate the behavior of the hyperbolic Zeta-function of the lattice $\Lambda(t)$ of the quadratic field when the growth parameter $t$. For applications of the theory of hyperbolic Zeta-function lattices to estimate the error of the approximate integration on the class of $E_s^\alpha$ by using generalized parallelepipedal nets with weights it is important to have assessment through growing the determinant of the lattice. In this work, we derived a new asymptotic formula for the hyperbolic Zeta function lattices of quadratic fields. The peculiarity of this formula is that it has a main two-term member and remaining a member with the assessment of incoming constants. In this formula more specific correlation between the hyperbolic Zeta function of lattices of quadratic fields and quadratic field characteristics as: the Zeta function of the Dedekind principal ideals of a quadratic field, the derivative of the Zeta-function of Dedekind principal ideals of a quadratic field, quadratic field by the regulator and the fundamental unit of the quadratic field. Bibliography: 31 titles.
Keywords: lattice, hyperbolic zeta function of lattice, net, hyperbolic zeta function of net, quadrature formula, parallelepiped net, method of optimal coefficients.
@article{CHEB_2015_16_4_a6,
     author = {N. M. Dobrovol'skii and N. N. Dobrovol'skii and V. N. Soboleva and D. K. Sobolev and E. I. Yushina},
     title = {Hyperbolic zeta function of lattice over quadratic field},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {100--149},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a6/}
}
TY  - JOUR
AU  - N. M. Dobrovol'skii
AU  - N. N. Dobrovol'skii
AU  - V. N. Soboleva
AU  - D. K. Sobolev
AU  - E. I. Yushina
TI  - Hyperbolic zeta function of lattice over quadratic field
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 100
EP  - 149
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a6/
LA  - ru
ID  - CHEB_2015_16_4_a6
ER  - 
%0 Journal Article
%A N. M. Dobrovol'skii
%A N. N. Dobrovol'skii
%A V. N. Soboleva
%A D. K. Sobolev
%A E. I. Yushina
%T Hyperbolic zeta function of lattice over quadratic field
%J Čebyševskij sbornik
%D 2015
%P 100-149
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a6/
%G ru
%F CHEB_2015_16_4_a6
N. M. Dobrovol'skii; N. N. Dobrovol'skii; V. N. Soboleva; D. K. Sobolev; E. I. Yushina. Hyperbolic zeta function of lattice over quadratic field. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 100-149. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a6/

[1] Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dobrovolsky N. N., Multidimensional Number-theoretic grid and lattice algorithms for finding the optimal coefficients, Izd-vo Tul. state PED. University n. a. L. N. Tolstoy, Tula, 2012, 283 pp. (in Russian)

[2] Dobrovolskaya L. P., Dobrovol'skii N. M., Dobrovolsky N. N., Ogorodnichuk N. K., Rebrov E. D., Rebrova I. Yu., “Some questions Number-theoretic methods in approximate analysis”, Algebra and number theory: modern problems and applications, Scientific notes, Orel state University. Ser. Natural, technical and medical science, no. 6/2, 2012, 90–98 (in Russian) | Zbl

[3] Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dobrovolsky N. N., “Hyperbolic Zeta-function grids and sheets the calculation of the optimal coefficients”, Chebyshevskii Sb., 13:4(44) (2012), 4–107 (in Russian)

[4] Dobrovol'skii M. N., “A functional equation for the hyperbolic zeta function of integer lattices”, Moscow Univ. Math. Bull., 62:5 (2007), 186–191 | DOI | MR | Zbl

[5] Dobrovol'skii M. N., Some number-theoretic methods of approximate analysis, Dis. ... candidate. Phys.-math. Sciences, Moscow state University, M., 2009

[6] Dobrovol'skii M. N., Some number-theoretic methods of approximate analysis, Author. dis. ... candidate. Phys.-math. Sciences, Moscow state University, M., 2009

[7] Dobrovol'skii N. M., Hyperbolic Zeta function lattices, Dep. v VINITI 24.08.84, No 6090-84, 1984 (in Russian)

[8] Dobrovol'skii N. M., Theoretical-numerical nets and their applications, Dis. ... candidate. Phys.-math. Sciences, Tula, 1984

[9] Dobrovol'skii N. M., Theoretical-numerical nets and their applications, Author. dis. ... candidate. Phys.-math. Sciences, M., 1985

[10] Dobrovol'skii N. M., “Theoretical-numerical nets and their applications”, Number theory and its applications, Proc. Dokl. Vsesoyuz. Conf. (Tbilisi, 1985), 67–70

[11] Dobrovol'skii N. M., Van'kova V. S., “About hyperbolic Zeta-functions of algebraic lattices”, Number theory and its applications, Proc. Dokl. republics. Conf. (Tashkent, 1990), 22

[12] Dobrovol'skii N. M., Van'kova V. S., Kozlova S. L., Hyperbolic Zeta-function of an algebraic lattices, Dep. v VINITI 12.04.90, No 2327-B90, 1990 (in Russian)

[13] Dobrovol'skii N. M., Roshchenya A. L., “On the number of lattice points in hyperbolic cross”, Algebraic, probabilistic, geometrical, combinatorial and functional methods in number theory, Coll. proc. Dokl. II Intern. Conf. (Voronezh, 1995), 53

[14] Dobrovol'skii N. M., Roshchenya A. L., “On the analytical continuation of hyperbolic Zeta functions of rational lattices”, Modern problems of theory numbers and its applications, Proc. Dokl. III Intern. Conf. (Tula, 1996), 49

[15] Dobrovol'skii N. M., Roshchenya A. L., “On the continuity of the hyperbolic zeta function of lattices”, Izv. Tul. Gos. Univ. Ser. Mat. Mekh. Inform., 2:1 (1996), 77–87 ; 274; 283–284 (in Russian) | MR

[16] Dobrovol'skii N. M., Roshchenya A. L., “On the number of points in a lattice in a hyperbolic cross”, Math. Notes, 63:3–4 (1998), 319–324 | DOI | DOI | MR

[17] Dobrovol'skii N. M., Roshchenya A. L., Rebrova I. Yu., “Continuity of the hyperbolic zeta function of lattices”, Math. Notes, 63:3–4 (1998), 460–463 | DOI | DOI | MR

[18] Dobrovol'skii N. M., Multidimensional number-theoretic nets and lattices and their applications, Dis. ... doctor of physical-Mat. Sciences, Tula, 2000

[19] Dobrovol'skii N. M., Multidimensional number-theoretic nets and lattices and their applications, Author. dis. ... doctor of physical-Mat. Sciences, M., 2000

[20] Dobrovol'skii N. M., Multidimensional number-theoretic nets and lattices and their applications, Publishing house of Tula state ped. Univ. L. N. Tolstoy, Tula, 2005, 195 pp.

[21] Dobrovol'skii N. M., Dobrovol'skii N. N., Yushina E. I., “On a matrix form of a theorem of Galois on purely periodic continued fractions”, Chebyshevskii Sb., 13:3(43) (2012), 47–52 (in Russian) | Zbl

[22] Davenport H., The higher arithmetic, Nauka, M., 1965

[23] Kassels D. V. S., An introduction to the geometry of numbers, Translated from the English by A. N. Andrianov and I. V. Bogacenko, ed. A. V. Malyshev, Mir, M., 1965, 421 pp. | MR

[24] Korobov N. M., Number-theoretic methods in approximate analysis, Second edition, Moskovskii Tsentr Nepreryvnogo Matematicheskogo Obrazovaniya, M., 2004, 285 pp. (in Russian) | MR

[25] Rebrova I. Yu., “Continuity of the hyperbolic zeta function of lattices”, Modern problems of number theory, Publishing house of Tula state pedagogical University, Tula, 1996, 119

[26] Rebrova I. Yu., “Continuity of the generalized hyperbolic zeta function of lattices and its analytic continuation”, Izv. Tul. Gos. Univ. Ser. Mat. Mekh. Inform., 4:3 (1998), 99–108 (in Russian) | Zbl

[27] Rebrova I. Yu., The space of lattices and functions on it, Dis. ... candidate. Phys.-math. Sciences, MPSU, M., 1999

[28] Rebrova I. Yu., The space of lattices and functions on it, Author. dis. ... candidate. Phys.-math. Sciences, MPSU, M., 1999

[29] Roshchenya A. L., Analytic continuation of the hyperbolic Zeta-functions of lattices, Dis. ... candidate. Phys.-math. Sciences, MPSU, M., 1998

[30] Roshchenya A. L., Analytic continuation of the hyperbolic Zeta-functions of lattices, Author. dis. ... candidate. Phys.-math. Sciences, MPSU, M., 1998

[31] Candrasekharan K., Introduction to analytic number theory, Translated from the English by S. A. Stepanov, ed. A. I. Vinogradov, Izdat. “Mir”, M., 1974, 187 pp. (in Russian)