Correlations between real conjugate algebraic numbers
Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 90-99

Voir la notice de l'article provenant de la source Math-Net.Ru

For $B\subset\mathbb{R}^k$ denote by $\Phi_k(Q,B)$ the number of ordered $k$-tuples in $B$ of real conjugate algebraic numbers of degree $\leq n$ and naive height $\leq Q$. We show that $$ \Phi_k(Q;B) = \frac{(2Q)^{n+1}}{2\zeta(n+1)} \int\limits_{B} \chi_k(\mathbf{x}) \prod_{1\le i j \le k} |x_i - x_j| d\mathbf{x} + O\left(Q^n\right),\quad Q\to \infty, $$ where the function $\chi_k$ is continuous in $\mathbb{R}^k$ and will be given explicitly. If $n=2$, then an additional factor $\log Q$ appears in the reminder term. This relation may be regarded as a "repulsion" of real algebraic conjugates from each other. The function $$ \rho_k(\mathbf{x}):= \chi_k(\mathbf{x}) \prod_{1\le i j \le k} |x_i - x_j| $$ coincides with a $k$-point correlation function of real zeros of a random polynomial of degree $n$ with independent coefficients uniformly distributed on $[-1,1]$. Bibliography: 18 titles.
Keywords: conjugate algebraic numbers, correlations between algebraic numbers, distribution of algebraic numbers, integral polynomial, random polynomial.
@article{CHEB_2015_16_4_a5,
     author = {F. G\"otze and D. Kaliada and D. N. Zaporozhets},
     title = {Correlations between real conjugate algebraic numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {90--99},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a5/}
}
TY  - JOUR
AU  - F. Götze
AU  - D. Kaliada
AU  - D. N. Zaporozhets
TI  - Correlations between real conjugate algebraic numbers
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 90
EP  - 99
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a5/
LA  - en
ID  - CHEB_2015_16_4_a5
ER  - 
%0 Journal Article
%A F. Götze
%A D. Kaliada
%A D. N. Zaporozhets
%T Correlations between real conjugate algebraic numbers
%J Čebyševskij sbornik
%D 2015
%P 90-99
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a5/
%G en
%F CHEB_2015_16_4_a5
F. Götze; D. Kaliada; D. N. Zaporozhets. Correlations between real conjugate algebraic numbers. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 90-99. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a5/