Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_4_a5, author = {F. G\"otze and D. Kaliada and D. N. Zaporozhets}, title = {Correlations between real conjugate algebraic numbers}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {90--99}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a5/} }
F. Götze; D. Kaliada; D. N. Zaporozhets. Correlations between real conjugate algebraic numbers. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 90-99. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a5/
[1] Bachmann P., Die analytische Zahlentheorie, v. 2, BG Teubner, Leipzig, 1894 | Zbl
[2] Baker A., Schmidt W., “Diophantine approximation and Hausdorff dimension”, Proc. London Math. Soc., 3:1 (1970), 1–11 | DOI | MR | Zbl
[3] Barroero F., “Counting algebraic integers of fixed degree and bounded height”, Monatshefte für Mathematik, 175:1 (2014), 25–41 | DOI | MR | Zbl
[4] Beresnevich V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90:2 (1999), 97–112 | MR | Zbl
[5] Beresnevich V., Bernik V., Götze F., “The distribution of close conjugate algebraic numbers”, Compos. Math., 146:5 (2013), 1165–1179 | DOI | MR
[6] Brown H., Mahler K., “A generalization of Farey sequences: Some exploration via the computer”, J. Number Theory, 3:3 (1971), 364–370 | DOI | MR | Zbl
[7] Cobeli C., Zaharescu A., “The Haros-Farey sequence at two hundred years”, Acta Univ. Apulensis Math. Inform., 2003, no. 5, 1–38 | MR | Zbl
[8] Dress F., “Discrépance des suites de Farey”, J. Théor. Nombres Bordeaux, 11:2 (1999), 345–367 | DOI | MR | Zbl
[9] Götze F., Kaliada D., Zaporozhets D., Correlation functions of real zeros of random polynomials, 2015, arXiv: 1510.00025
[10] Götze F., Kaliada D., Zaporozhets D., Distribution of complex algebraic numbers, 2015, arXiv: 1410.3623
[11] D. Kaliada, “Distribution of real algebraic numbers of the second degree”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk (In Russian) | MR
[12] Kaliada D., On the density function of the distribution of real algebraic numbers, 2014, arXiv: 1405.1627
[13] D. Koleda, “On the asymptotic distribution of algebraic numbers with growing naive height”, Chebyshevskii Sb., 16:1 (2015), 191–204 (In Russian) | MR
[14] Masser D., Vaaler J. D., “Counting algebraic numbers with large height, II”, Trans. Am. Math. Soc., 359:1 (2007), 427–445 | DOI | MR | Zbl
[15] Mikolás M., “Farey series and their connection with the prime number problem, I”, Acta Univ. Szeged. Sect. Sci. Math., 13 (1949), 93–117 | MR | Zbl
[16] M. M. Skriganov, “Lattices in algebraic number fields and uniform distribution mod 1”, Algebra i Analiz, 1:2 (1989), 207–228 (In Russian)
[17] van der Waerden B. L., “Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt”, Monatsh. Math. Phys., 43:1 (1936), 133–147 | DOI | MR
[18] D. Zaporozhets, “Random polynomials and geometric probability”, Dokl. Akad. Nauk, 71:1 (2005), 53–57 | MR