Correlations between real conjugate algebraic numbers
Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 90-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $B\subset\mathbb{R}^k$ denote by $\Phi_k(Q,B)$ the number of ordered $k$-tuples in $B$ of real conjugate algebraic numbers of degree $\leq n$ and naive height $\leq Q$. We show that $$ \Phi_k(Q;B) = \frac{(2Q)^{n+1}}{2\zeta(n+1)} \int\limits_{B} \chi_k(\mathbf{x}) \prod_{1\le i j \le k} |x_i - x_j| d\mathbf{x} + O\left(Q^n\right),\quad Q\to \infty, $$ where the function $\chi_k$ is continuous in $\mathbb{R}^k$ and will be given explicitly. If $n=2$, then an additional factor $\log Q$ appears in the reminder term. This relation may be regarded as a "repulsion" of real algebraic conjugates from each other. The function $$ \rho_k(\mathbf{x}):= \chi_k(\mathbf{x}) \prod_{1\le i j \le k} |x_i - x_j| $$ coincides with a $k$-point correlation function of real zeros of a random polynomial of degree $n$ with independent coefficients uniformly distributed on $[-1,1]$. Bibliography: 18 titles.
Keywords: conjugate algebraic numbers, correlations between algebraic numbers, distribution of algebraic numbers, integral polynomial, random polynomial.
@article{CHEB_2015_16_4_a5,
     author = {F. G\"otze and D. Kaliada and D. N. Zaporozhets},
     title = {Correlations between real conjugate algebraic numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {90--99},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a5/}
}
TY  - JOUR
AU  - F. Götze
AU  - D. Kaliada
AU  - D. N. Zaporozhets
TI  - Correlations between real conjugate algebraic numbers
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 90
EP  - 99
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a5/
LA  - en
ID  - CHEB_2015_16_4_a5
ER  - 
%0 Journal Article
%A F. Götze
%A D. Kaliada
%A D. N. Zaporozhets
%T Correlations between real conjugate algebraic numbers
%J Čebyševskij sbornik
%D 2015
%P 90-99
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a5/
%G en
%F CHEB_2015_16_4_a5
F. Götze; D. Kaliada; D. N. Zaporozhets. Correlations between real conjugate algebraic numbers. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 90-99. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a5/

[1] Bachmann P., Die analytische Zahlentheorie, v. 2, BG Teubner, Leipzig, 1894 | Zbl

[2] Baker A., Schmidt W., “Diophantine approximation and Hausdorff dimension”, Proc. London Math. Soc., 3:1 (1970), 1–11 | DOI | MR | Zbl

[3] Barroero F., “Counting algebraic integers of fixed degree and bounded height”, Monatshefte für Mathematik, 175:1 (2014), 25–41 | DOI | MR | Zbl

[4] Beresnevich V., “On approximation of real numbers by real algebraic numbers”, Acta Arith., 90:2 (1999), 97–112 | MR | Zbl

[5] Beresnevich V., Bernik V., Götze F., “The distribution of close conjugate algebraic numbers”, Compos. Math., 146:5 (2013), 1165–1179 | DOI | MR

[6] Brown H., Mahler K., “A generalization of Farey sequences: Some exploration via the computer”, J. Number Theory, 3:3 (1971), 364–370 | DOI | MR | Zbl

[7] Cobeli C., Zaharescu A., “The Haros-Farey sequence at two hundred years”, Acta Univ. Apulensis Math. Inform., 2003, no. 5, 1–38 | MR | Zbl

[8] Dress F., “Discrépance des suites de Farey”, J. Théor. Nombres Bordeaux, 11:2 (1999), 345–367 | DOI | MR | Zbl

[9] Götze F., Kaliada D., Zaporozhets D., Correlation functions of real zeros of random polynomials, 2015, arXiv: 1510.00025

[10] Götze F., Kaliada D., Zaporozhets D., Distribution of complex algebraic numbers, 2015, arXiv: 1410.3623

[11] D. Kaliada, “Distribution of real algebraic numbers of the second degree”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk (In Russian) | MR

[12] Kaliada D., On the density function of the distribution of real algebraic numbers, 2014, arXiv: 1405.1627

[13] D. Koleda, “On the asymptotic distribution of algebraic numbers with growing naive height”, Chebyshevskii Sb., 16:1 (2015), 191–204 (In Russian) | MR

[14] Masser D., Vaaler J. D., “Counting algebraic numbers with large height, II”, Trans. Am. Math. Soc., 359:1 (2007), 427–445 | DOI | MR | Zbl

[15] Mikolás M., “Farey series and their connection with the prime number problem, I”, Acta Univ. Szeged. Sect. Sci. Math., 13 (1949), 93–117 | MR | Zbl

[16] M. M. Skriganov, “Lattices in algebraic number fields and uniform distribution mod 1”, Algebra i Analiz, 1:2 (1989), 207–228 (In Russian)

[17] van der Waerden B. L., “Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt”, Monatsh. Math. Phys., 43:1 (1936), 133–147 | DOI | MR

[18] D. Zaporozhets, “Random polynomials and geometric probability”, Dokl. Akad. Nauk, 71:1 (2005), 53–57 | MR