Quadratic forms, algebraic groups and number theory
Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 77-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the article is an overview of some important results in the theory of quadratic forms, and algebraic groups, and which had an impact on the development of the theory of numbers. The article focuses on selected tasks and is not exhaustive. A mathematical structures, methods and results, including the new ones, related in some extent with research of V.P. Platonov. The content of the article is following. In the introduction drawn attention to the classic researches of Korkin, Zolotarev and Voronoi on the theory of extreme forms and recall the relevant definitions. In section 2 "Quadratic forms and lattices" presented the necessary definitions, the results of the lattices and quadratic forms over the field of real numbers and over the ring of rational integers. Section 3 "Algebraic groups" contains a representation of the class of lattices in a real space as factors of algebraic groups, as well as the version of Mahler's compactness criterion of such factors. Bringing the results of the compactness of factors of orthogonal groups of quadratic forms which do not represent zero rationally, and the definitions and concepts related to the quaternion algebras over rational numbers. These results explicitly or implicitly are used in the works of V. P. Platonov and in sections 4 and 5. Section 4 " Heegner points and their generalizations" provides an overview of new research in the direction of finding Heegner points and their generalizations. Section 5 summarizes some new research and results on the Hasse principle for algebraic groups. For the reading of the article may be a useful another article which has published by the author in the Chebyshevsky sbornik, vol. 16, no. 3, in 2015. I am deeply grateful to N. M. Dobrovolskii for help and support under the preparation of the article for publication. Bibliography: 31 titles.
Keywords: positive definite quadratic form; finite-dimensional associative division algebra over rationals; Hasse principle; rigidity; Heegner point.
@article{CHEB_2015_16_4_a4,
     author = {N. M. Glazunov},
     title = {Quadratic forms, algebraic groups and number theory},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {77--89},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a4/}
}
TY  - JOUR
AU  - N. M. Glazunov
TI  - Quadratic forms, algebraic groups and number theory
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 77
EP  - 89
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a4/
LA  - en
ID  - CHEB_2015_16_4_a4
ER  - 
%0 Journal Article
%A N. M. Glazunov
%T Quadratic forms, algebraic groups and number theory
%J Čebyševskij sbornik
%D 2015
%P 77-89
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a4/
%G en
%F CHEB_2015_16_4_a4
N. M. Glazunov. Quadratic forms, algebraic groups and number theory. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 77-89. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a4/

[1] Korkin A., Zolotarev G., “Sur les formes quadratiques positives quaternaires”, Math. Ann., 5 (1872), 581–583 | DOI | MR | Zbl

[2] Korkin A., Zolotarev G., “Sur les formes quadratiques”, Math. Ann., 6 (1873), 366–389 | DOI | MR | Zbl

[3] Korkin A., Zolotarev G., “Sur les formes quadratiques positives”, Math. Ann., 11 (1877), 242–292 | DOI | MR | Zbl

[4] Voronoi G., “Sur quelques proprietes des formes quadratiques positives parfaites”, J. Reine Angew. Math., 133 (1907), 97–178 | MR

[5] Malyshev A. V., “On the representation of integers by positive quadratic forms”, Trudy Mat. Inst. Steklov., 65, ed. I. G. Petrovskii, Acad. Sci. USSR, M., 1962, 3–212

[6] Ryshkov S. S., Baranovskii E. P., “Classical methods in the theory of lattice packings”, Uspekhi Mat. Nauk, 34:4(208) (1979), 3–63 | MR | Zbl

[7] Cassels J. W. S., An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin, 1959 | MR | Zbl

[8] Blichfeldt H. F., “The minimum values of quadratic forms, and the closest packing of spheres”, Math. Ann., 39 (1935), 1–15 | MR

[9] Cassels J. W. S., Rational quadratic forms, Academic Press, London–New York, 1978 ; т. 2, 304 с. | MR | MR | Zbl

[10] Shapharevich I. R., Foundations of Algebraic Geometry, v. 1, Nauka, M., 1988, 352 pp. (in Russian) ; v. 2, 304 pp. | MR

[11] Platonov V. P., “Arithmetic properties of quadratic function fields and torsion in Jacobians”, Chebyshevskii Sb., 11:1 (2010), 234–238 | MR | Zbl

[12] Platonov V. P., “The arithmetic theory of linear algebraic groups and number theory”, Proc. Steklov Inst. Math., 132, 1973, 184–191 | MR | Zbl

[13] Platonov V. P., “The Tannaka–Artin problem and reduced $K$-theory”, Math. USSR-Izv., 40:2 (1976), 211–243 | DOI | MR | Zbl

[14] Platonov V. P., “Remarks on my paper "The Tannaka–Artin problem and reduced $K$-theory"”, Izv. Akad. Nauk SSSR Ser. Mat., 40:5 (1976), 1198 | MR | Zbl

[15] Borevich Z. I., Shapharevich I. R., Number Theory, Nauka, M., 1985, 503 pp. (in Russian)

[16] Manin Ju. I., Cubic forms. Algebra, geometry, arithmetic, North-Holland, 1974 | MR | Zbl

[17] Hasse principle, Encyclopedia of Mathematics, http://www.encyclopediaofmath.org

[18] Birch B., “Heegner points: the beginnings”, MSRI Publications, 40, 2004, 1–10 | MR

[19] Darmon H., “Integration on $H_p \times H$ and arithmetic applications”, Ann. of Math., 154:3 (2001), 589–639 | DOI | MR | Zbl

[20] Guitart X., Masdeu M., “Overconvergent cohomology and quaternionic Darmon points”, J. Lond. Math. Soc. Ser. II, 90:2 (2014), 393–403 | DOI | MR

[21] Greenberg M., “Stark–Heegner points and the cohomology of quaternionic Shimura varieties”, Duke Math. J., 147:3 (2009), 541–575 | DOI | MR | Zbl

[22] Pollack D., Pollack R., “A construction of rigid analitic cohomology classes for congruence subgroups of $SL_3({\mathbb Z})$”, Canad. J. Math., 61:3 (2009), 674–690 | DOI | MR | Zbl

[23] Yong H., “Hasse principle for simply connected group over function fields of surfaces”, J. Ramanujan Math., 29:2 (2014), 155–199 | MR | Zbl

[24] Colliot-Thèlène J.-I., Parimala R., Suresh V., “Patching and local-global principles for homogeneous spaces over function fields of $p$-adic curves”, Commut. Math. Helv., 87 (2012), 1011–1033 | DOI | MR | Zbl

[25] Preeti R., “Classification theorems for hermitien forms, the Rost kernel and Hasse principle over fields with $cd_2(k) \le 3$”, J. Algebra, 385 (2013), 294–313 | DOI | MR | Zbl

[26] Bayer-Fluckiger E., Parimala R., “Galois cohomology of the classical groups over fields of cohomological dimension $\le 2$”, Invent. Math., 122 (1995), 195–229 | DOI | MR | Zbl

[27] Merkurjev A., “Norm principle for algebraic groups”, St. Petersburg J. Math., 7 (1996), 243–264 | MR

[28] Glazunov N. M., “Minkowski's Conjecture on Critical Lattices and the Quantifier Elimination // Algoritmic algebra and logic”, Proc. of the A3L Int. Conf. (Passau, Germany, 2005), 111–114

[29] Glazunov N. M., “Critical lattices, elliptic curves and their possible dynamics”, Proceedings of the Third Int. Voronoj Conf. (Kiev, 2005), v. 3, 146–152 | Zbl

[30] Glazunov N. M., “Modular curves, Hecke operators, periods and formal groups”, X International Conference dedicated to the 70th anniversary of Yu. A. Drozd, I. I. Mechnikov Odessa National University, Odessa, 2015, 42

[31] Glazunov N. M., “Extremal forms and rigidity in arithmetic geometry and in dynamics”, Chebyshevskii Sbornik, 16:3 (2015), 124–146