Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_4_a4, author = {N. M. Glazunov}, title = {Quadratic forms, algebraic groups and number theory}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {77--89}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a4/} }
N. M. Glazunov. Quadratic forms, algebraic groups and number theory. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 77-89. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a4/
[1] Korkin A., Zolotarev G., “Sur les formes quadratiques positives quaternaires”, Math. Ann., 5 (1872), 581–583 | DOI | MR | Zbl
[2] Korkin A., Zolotarev G., “Sur les formes quadratiques”, Math. Ann., 6 (1873), 366–389 | DOI | MR | Zbl
[3] Korkin A., Zolotarev G., “Sur les formes quadratiques positives”, Math. Ann., 11 (1877), 242–292 | DOI | MR | Zbl
[4] Voronoi G., “Sur quelques proprietes des formes quadratiques positives parfaites”, J. Reine Angew. Math., 133 (1907), 97–178 | MR
[5] Malyshev A. V., “On the representation of integers by positive quadratic forms”, Trudy Mat. Inst. Steklov., 65, ed. I. G. Petrovskii, Acad. Sci. USSR, M., 1962, 3–212
[6] Ryshkov S. S., Baranovskii E. P., “Classical methods in the theory of lattice packings”, Uspekhi Mat. Nauk, 34:4(208) (1979), 3–63 | MR | Zbl
[7] Cassels J. W. S., An Introduction to the Geometry of Numbers, Springer-Verlag, Berlin, 1959 | MR | Zbl
[8] Blichfeldt H. F., “The minimum values of quadratic forms, and the closest packing of spheres”, Math. Ann., 39 (1935), 1–15 | MR
[9] Cassels J. W. S., Rational quadratic forms, Academic Press, London–New York, 1978 ; т. 2, 304 с. | MR | MR | Zbl
[10] Shapharevich I. R., Foundations of Algebraic Geometry, v. 1, Nauka, M., 1988, 352 pp. (in Russian) ; v. 2, 304 pp. | MR
[11] Platonov V. P., “Arithmetic properties of quadratic function fields and torsion in Jacobians”, Chebyshevskii Sb., 11:1 (2010), 234–238 | MR | Zbl
[12] Platonov V. P., “The arithmetic theory of linear algebraic groups and number theory”, Proc. Steklov Inst. Math., 132, 1973, 184–191 | MR | Zbl
[13] Platonov V. P., “The Tannaka–Artin problem and reduced $K$-theory”, Math. USSR-Izv., 40:2 (1976), 211–243 | DOI | MR | Zbl
[14] Platonov V. P., “Remarks on my paper "The Tannaka–Artin problem and reduced $K$-theory"”, Izv. Akad. Nauk SSSR Ser. Mat., 40:5 (1976), 1198 | MR | Zbl
[15] Borevich Z. I., Shapharevich I. R., Number Theory, Nauka, M., 1985, 503 pp. (in Russian)
[16] Manin Ju. I., Cubic forms. Algebra, geometry, arithmetic, North-Holland, 1974 | MR | Zbl
[17] Hasse principle, Encyclopedia of Mathematics, http://www.encyclopediaofmath.org
[18] Birch B., “Heegner points: the beginnings”, MSRI Publications, 40, 2004, 1–10 | MR
[19] Darmon H., “Integration on $H_p \times H$ and arithmetic applications”, Ann. of Math., 154:3 (2001), 589–639 | DOI | MR | Zbl
[20] Guitart X., Masdeu M., “Overconvergent cohomology and quaternionic Darmon points”, J. Lond. Math. Soc. Ser. II, 90:2 (2014), 393–403 | DOI | MR
[21] Greenberg M., “Stark–Heegner points and the cohomology of quaternionic Shimura varieties”, Duke Math. J., 147:3 (2009), 541–575 | DOI | MR | Zbl
[22] Pollack D., Pollack R., “A construction of rigid analitic cohomology classes for congruence subgroups of $SL_3({\mathbb Z})$”, Canad. J. Math., 61:3 (2009), 674–690 | DOI | MR | Zbl
[23] Yong H., “Hasse principle for simply connected group over function fields of surfaces”, J. Ramanujan Math., 29:2 (2014), 155–199 | MR | Zbl
[24] Colliot-Thèlène J.-I., Parimala R., Suresh V., “Patching and local-global principles for homogeneous spaces over function fields of $p$-adic curves”, Commut. Math. Helv., 87 (2012), 1011–1033 | DOI | MR | Zbl
[25] Preeti R., “Classification theorems for hermitien forms, the Rost kernel and Hasse principle over fields with $cd_2(k) \le 3$”, J. Algebra, 385 (2013), 294–313 | DOI | MR | Zbl
[26] Bayer-Fluckiger E., Parimala R., “Galois cohomology of the classical groups over fields of cohomological dimension $\le 2$”, Invent. Math., 122 (1995), 195–229 | DOI | MR | Zbl
[27] Merkurjev A., “Norm principle for algebraic groups”, St. Petersburg J. Math., 7 (1996), 243–264 | MR
[28] Glazunov N. M., “Minkowski's Conjecture on Critical Lattices and the Quantifier Elimination // Algoritmic algebra and logic”, Proc. of the A3L Int. Conf. (Passau, Germany, 2005), 111–114
[29] Glazunov N. M., “Critical lattices, elliptic curves and their possible dynamics”, Proceedings of the Third Int. Voronoj Conf. (Kiev, 2005), v. 3, 146–152 | Zbl
[30] Glazunov N. M., “Modular curves, Hecke operators, periods and formal groups”, X International Conference dedicated to the 70th anniversary of Yu. A. Drozd, I. I. Mechnikov Odessa National University, Odessa, 2015, 42
[31] Glazunov N. M., “Extremal forms and rigidity in arithmetic geometry and in dynamics”, Chebyshevskii Sbornik, 16:3 (2015), 124–146