The rate of convergence of the average value of the full rational arithmetic sums
Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 303-318.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the exact value of a index of convergence for the mean-value of the complete rational arithmetical for the arithmetical function, satisfying the functional equation of Gaussian type, is found. In particular, the Bernoulli's polynomials satisfy for this functional equation. A similar result holds for the complete rational trigonometric sums (Hua Loo-keng, 1952). The deduction of the main result of the paper leads of the elementary method. We owe to I. M. Vinogradov for the demonstration of fruitful results and profit of it. The complete rational arithmetic sums are the analogue the oscillatory integral of a periodic function, for example, trigonometric functions. In 1978 similar results for the exact value of the index of convergence of the trigonometric integral were obtained (G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov). In nowadays for a multivariate problem there are successful to get only upper and lower estimates for the index of convergence of appropriate sums and integrals. Bibliography: 19 titles.
Keywords: the Gauss theorem of a multiplication for the Euler gamma-function, complete rational arithmetical sums, a functional equation on a complete system of residues by modulo of natural number, the Bernoulli polynomials.
@article{CHEB_2015_16_4_a15,
     author = {V. N. Chubarikov},
     title = {The rate of convergence of the average value of the full rational arithmetic sums},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {303--318},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a15/}
}
TY  - JOUR
AU  - V. N. Chubarikov
TI  - The rate of convergence of the average value of the full rational arithmetic sums
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 303
EP  - 318
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a15/
LA  - ru
ID  - CHEB_2015_16_4_a15
ER  - 
%0 Journal Article
%A V. N. Chubarikov
%T The rate of convergence of the average value of the full rational arithmetic sums
%J Čebyševskij sbornik
%D 2015
%P 303-318
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a15/
%G ru
%F CHEB_2015_16_4_a15
V. N. Chubarikov. The rate of convergence of the average value of the full rational arithmetic sums. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 303-318. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a15/

[1] Vinogradov I. M., The method of trigonometric sums in the theory of numbers, Second edition, Nauka, M., 1980, 144 pp. (in Russian)

[2] Hua L.-K., “An improvement of Vinogradov's mean-value theorem and several applications”, Quart. J. Math., 20 (1949), 48–61 | DOI | MR | Zbl

[3] Arkhipov G. I., Selected works, Orl. Gos. Univ., Orel, 2013, 464 pp. (in Russian)

[4] Arkhipov G. I., Čubarikov V. N., “Multiple trigonometric sums”, Izv. Akad. Nauk SSSR Ser. Mat., 17:1 (1976), 209–220

[5] Arkhipov G. I., Karatsuba A. A., Čubarikov V. N., Theory of multiple trigonometric sums, Nauka, M., 1987, 368 pp.

[6] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., Trigonometric Sums in Number Theory and Analysis, De Gruyter expositions in mathematics, 39, Berlin–New York, 2004, 554 pp. | MR | Zbl

[7] Franel J., “Les suites de Farey et le probleme des nombres premiers”, Göttinger Nachrichten, 1924, 198–201 | Zbl

[8] Landau E., Vorlesungen über Zahlentheorie, v. 2, Leipzig, 1927, 240 pp.

[9] Romanov N. P., Number theory and functional analysis, collected papers, Tom. Univ., Tomsk, 2013, 478 pp. (in Russian)

[10] Greaves G. R. H., Hall R. R., Huxley M. N., Wilson J. C., “Multiple Franel Integrals”, Mathematika, 40 (1993), 51–70 | DOI | MR | Zbl

[11] Čubarikov V. N., “On a multiple trigonometric integral”, Dokl. AN SSSR, 227:6 (1976), 1308–1310 | MR | Zbl

[12] Čubarikov V. N., “Multiple rational trigonometric sums and multiple integrals”, Mat. Zametki, 20:1 (1978), 61–68

[13] Čubarikov V. N., “Convergence exponent of singular integral in a multi-dimensional additive problem”, Dokl. RAN, 463:5 (2015), 530 | DOI | Zbl

[14] Čubarikov V. N., “The arithmetic sum and gaussian multiplication theorem”, Chebyshevskii Sb., 16:2(54) (2015), 231–253

[15] Čubarikov V. N., “Elementary of the complete rational arithmetical sums”, Chebyshevskii Sb., 16:3(55) (2015), 452–461

[16] Čubarikov V. N., “Full rational arithmetic sums”, Vestnik Moskov. Univ. Ser. Mat., Mech., 2016, no. 1, 60–61

[17] Čubarikov V. N., “The arithmetic sum of the values of polynomials”, Dokl. RAN, 466:2 (2016), 1–2 | DOI | Zbl

[18] Shihsadilov M. Sh., “A class of oscillatory integrals”, Vestnik Moskov. Univ. Ser. Mat., Mech., 2015, no. 5, 61–63 | MR