On coatoms and complements in congruence lattices of unars with Mal'tsev operation
Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 212-226

Voir la notice de l'article provenant de la source Math-Net.Ru

One important problem is studying of lattices that naturally associated with universal algebra. In this article is considered algebras $\langle A, p, f \rangle$ with one Mal'tsev operation $p$ and one unary operation $f$ acting as endomorphism with respect to operation $p$. We study properties of congruence lattices of algebras $\langle A, p, f \rangle$ with Mal’tsev operation $p$ that introduced by V. K. Kartashov. This algebra is defined as follows. Let $\langle A, f \rangle$ be an arbitrary unar and $x, y \in A$. For any element $x$ of the unar $\langle A, f \rangle $ by $f^n(x)$ we denote the result of $f$ applied $n$ times to an element $x$. Also $f^0(x)=x$. Assume that $$M_{x, y} = \{ n\in \mathbb{N} \cup \{0\} \mid f^{n}(x) = f^{n}(y) \}$$ and also $k(x, y) = \min M_{x, y}$, if $M_{x, y} \ne \emptyset$ and $k(x, y) = \infty$, if $M_{x, y} = \emptyset$. Assume further $$ p( x, y, z ) \stackrel{def}{=} \begin{cases} z, \text{ если } k(x,y) \leqslant k(y,z)\\ x, \text{ если } k(x,y) > k(y,z). \end{cases} $$ It is described a structure of coatoms in congruence lattices of algebras $\langle A, p, f \rangle$ from this class. It is proved congruence lattices of algebras $\langle A, p, f \rangle$ has no coatoms if and only if the unar $\langle A, f \rangle$ is connected, contains one-element subunar and has infinite depth. In other cases congruence lattices of algebras $\langle A, p, f \rangle$ has uniquely coatom. It is showed for any congruences $\theta \ne A \times A$ and $\varphi \ne A \times A$ of algebra $\langle A, p, f \rangle$ fulfills $\theta \vee \varphi A \times A$. Necessary and sufficient conditions when a congruence lattice of algebras from given class is complemented, uniquely complemented, relatively complemented, Boolean, generalized Boolean, geometric are obtained. It is showed any non-trivial congruence of algebra $\langle A, p, f \rangle$ from this class has no complement. It is proved that congruence lattices of any algebra $\langle A, p, f \rangle$ from given class is dual pseudocomplemented lattice. Bibliography: 24 titles.
Keywords: congruence lattice, complemented lattice, dual pseudocomplemented lattice, coatom (dual atom), algebra with operators, unar with Mal'tsev operation.
@article{CHEB_2015_16_4_a11,
     author = {A. N. Lata},
     title = {On coatoms and complements in congruence lattices of unars with {Mal'tsev} operation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {212--226},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a11/}
}
TY  - JOUR
AU  - A. N. Lata
TI  - On coatoms and complements in congruence lattices of unars with Mal'tsev operation
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 212
EP  - 226
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a11/
LA  - ru
ID  - CHEB_2015_16_4_a11
ER  - 
%0 Journal Article
%A A. N. Lata
%T On coatoms and complements in congruence lattices of unars with Mal'tsev operation
%J Čebyševskij sbornik
%D 2015
%P 212-226
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a11/
%G ru
%F CHEB_2015_16_4_a11
A. N. Lata. On coatoms and complements in congruence lattices of unars with Mal'tsev operation. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 212-226. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a11/