On coatoms and complements in congruence lattices of unars with Mal'tsev operation
Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 212-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

One important problem is studying of lattices that naturally associated with universal algebra. In this article is considered algebras $\langle A, p, f \rangle$ with one Mal'tsev operation $p$ and one unary operation $f$ acting as endomorphism with respect to operation $p$. We study properties of congruence lattices of algebras $\langle A, p, f \rangle$ with Mal’tsev operation $p$ that introduced by V. K. Kartashov. This algebra is defined as follows. Let $\langle A, f \rangle$ be an arbitrary unar and $x, y \in A$. For any element $x$ of the unar $\langle A, f \rangle $ by $f^n(x)$ we denote the result of $f$ applied $n$ times to an element $x$. Also $f^0(x)=x$. Assume that $$M_{x, y} = \{ n\in \mathbb{N} \cup \{0\} \mid f^{n}(x) = f^{n}(y) \}$$ and also $k(x, y) = \min M_{x, y}$, if $M_{x, y} \ne \emptyset$ and $k(x, y) = \infty$, if $M_{x, y} = \emptyset$. Assume further $$ p( x, y, z ) \stackrel{def}{=} \begin{cases} z, \text{ если } k(x,y) \leqslant k(y,z)\\ x, \text{ если } k(x,y) > k(y,z). \end{cases} $$ It is described a structure of coatoms in congruence lattices of algebras $\langle A, p, f \rangle$ from this class. It is proved congruence lattices of algebras $\langle A, p, f \rangle$ has no coatoms if and only if the unar $\langle A, f \rangle$ is connected, contains one-element subunar and has infinite depth. In other cases congruence lattices of algebras $\langle A, p, f \rangle$ has uniquely coatom. It is showed for any congruences $\theta \ne A \times A$ and $\varphi \ne A \times A$ of algebra $\langle A, p, f \rangle$ fulfills $\theta \vee \varphi A \times A$. Necessary and sufficient conditions when a congruence lattice of algebras from given class is complemented, uniquely complemented, relatively complemented, Boolean, generalized Boolean, geometric are obtained. It is showed any non-trivial congruence of algebra $\langle A, p, f \rangle$ from this class has no complement. It is proved that congruence lattices of any algebra $\langle A, p, f \rangle$ from given class is dual pseudocomplemented lattice. Bibliography: 24 titles.
Keywords: congruence lattice, complemented lattice, dual pseudocomplemented lattice, coatom (dual atom), algebra with operators, unar with Mal'tsev operation.
@article{CHEB_2015_16_4_a11,
     author = {A. N. Lata},
     title = {On coatoms and complements in congruence lattices of unars with {Mal'tsev} operation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {212--226},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a11/}
}
TY  - JOUR
AU  - A. N. Lata
TI  - On coatoms and complements in congruence lattices of unars with Mal'tsev operation
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 212
EP  - 226
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a11/
LA  - ru
ID  - CHEB_2015_16_4_a11
ER  - 
%0 Journal Article
%A A. N. Lata
%T On coatoms and complements in congruence lattices of unars with Mal'tsev operation
%J Čebyševskij sbornik
%D 2015
%P 212-226
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a11/
%G ru
%F CHEB_2015_16_4_a11
A. N. Lata. On coatoms and complements in congruence lattices of unars with Mal'tsev operation. Čebyševskij sbornik, Tome 16 (2015) no. 4, pp. 212-226. http://geodesic.mathdoc.fr/item/CHEB_2015_16_4_a11/

[1] Kartashov V. K., “On unars with Mal'tsev operation”, Universal'naya algebra i ee prilozheniya, Tezisy soobshheniy uchastnikov mezhdunarodnogo seminara, posvyashhennogo pamyati prof. Moskovskogo Gos. Univ. L. A. Skornyakova, Peremena, Volgograd, 1999, 31–32 (in Russian)

[2] Kurosh A. G., General Algebra. Lectures 1969–1970 Academic Year, Nauka, M., 1974, 160 pp. (in Russian) | Zbl

[3] Johnsson B., “A survey of Boolean algebras with operators”, Algebras and Orders, NATO ASI Series, 389 (1993), 239–286 | DOI | MR

[4] Hyndman J., Nation J. B., Nishida J., Congruence lattices of semilattices with operators, preprint, , 2015 (data obrascheniya: iyun 2015) http://www.math.hawaii.edu/ ̃ jb/conslo_submit.pdf

[5] Bonsangue M. M., Kurz A., Rewitzky I. M., “Coalgebraic representations of distributive lattices with operators”, Topology and its Applications, 154:4 (2007), 778–791 | DOI | MR | Zbl

[6] Adaricheva K. V., Nation J. B., “Lattices of quasi-equational theories as congruence lattices of semilattices with operators. I; II”, International Journal of Algebra and Computation, 22:07 (2012), 27 pp. ; 16 pp. | MR

[7] Nurakunov A. M., “Equational theories as congruences of enriched monoids”, Algebra Universalis, 58:3 (2008), 357–372 | DOI | MR | Zbl

[8] Berman J., “On the congruence lattices of unary algebras”, Proc. Amer. Math. Soc., 36:1 (1972), 34–38 | DOI | MR | Zbl

[9] Egorova D. P., Skornyakov L. A., “On the congruence lattice of unary algebra”, Mezhvuzovskiy Nauchnyy Sbornik, Uporyadochennye Mnozhestva i Reshetki, 4, Izdatel'stvo Saratovskogo universiteta, Saratov, 1977, 28–40 (in Russian) | Zbl

[10] Boshhenko A. P., “Pseudocomplements in congruence lattices of unars”, Algebraicheskie Sistemy, Mezhvuzovskiy Sbornik Nauchnyh Rabot, Izdatel'stvo VGPI imeni A. S. Serafimovicha, Volgograd, 1989, 23–26 (in Russian)

[11] Boshhenko A. P., “On dual pseudocomplements in congruence lattices of unars”, Trudy Uchastnikov Mezhdunarodnogo Seminara, posvyashhennogo pamyati prof. Moskovskogo Gos. Univ. L. A. Skornyakova, Universal'naya algebra i ee prilozheniya, Peremena, Volgograd, 2000, 39–44 (in Russian)

[12] Pixley A. F., “Distributivity and permutability of congruence relations in equational classes of algebras”, Proc. Amer. Math. Soc., 14:1 (1963), 105–109 | DOI | MR | Zbl

[13] Usol'tsev V. L., “Simple and pseudosimple algebras with operators”, Journal of Mathematical Sciences, 164:2 (2010), 281–293 | DOI | MR | MR | Zbl | Zbl

[14] Usol'tsev V. L., “On subdirect irreducible unars with Mal'tsev operation”, Izvestiya VGPU. Seriya estestvennye i fiziko-matematicheskie nauki, 2005, no. 4(13), 17–24 (in Russian) | MR

[15] Usol'tsev V. L., “Structure of atoms in congruence lattices of algebras from one class of unars with Mal'tsev operation”, Sovremennye problemy gumanitarnyh i estestvennyh nauk, Materialy XVIII Mezhdunarodnoy nauchno-prakticheskoy konferencii 26–27 marta 2014 g., Spetskniga, M., 2014, 39–44 (in Russian)

[16] Usol'tsev V. L., “On strictly simple ternary algebras with operators”, Chebyshevskiy sbornik, 14:4(48) (2013), 196–204 (in Russian) | MR

[17] Lata A. N., “Uniform unars with standard Mal'tsev operation”, Vestnik Studencheskogo Nauchnogo Obshhestva, 28, Peremena, Volgograd, 2012, 227–231 (in Russian)

[18] Lata A. N., “Regular unars with standard Mal'tsev operation”, Vestnik Studencheskogo Nauchnogo Obshhestva, 29, Peremena, Volgograd, 2013, 317–321 (in Russian)

[19] Lata A. N., “Weakly regular unars with standard Mal'tsev operation”, Chebyshevskiy sbornik, 14:4(48) (2013), 146–153 (in Russian) | MR

[20] Salii V. N., Lattices with unique complements, Translations of the American Mathematical Society, American Mathematical Society, Providence, R.I., 1988 | MR | MR | Zbl

[21] Grätzer G., General Lattice Theory, Akademie-Verlag, Berlin, 1978 | MR | Zbl

[22] Artamonov V. A., Salii V. N., Skornyakov L. A., Shevrin L. N., Shul'geifer E. G., General algebra, v. 2, ed. Skornyakov L. A., Nauka, M., 1991, 480 pp. (in Russian)

[23] Smirnov D. M., Varieties of algebras, VO “Nauka”, Sibirskaya izdatel'skaya firma, N., 1992, 205 pp. (in Russian)

[24] Wenzel G. H., “Subdirect irreducibility and equational compactness in unary algebras $\langle A; f \rangle$”, Arch. Math. (Basel), 21 (1970), 256–264 | DOI | MR | Zbl