On a problem of Malyshev A. V. of integer points on multidimensional hyperboloids
Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 209-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some development early conducted investigations on the problem of Malyshev A. V. about the number of integer points lying in some areas on multidimensional hyperboloids is given in this work. The task of obtaining of asymptotic formulae for quantity of integer points in areas of the kind of De Luri on multidimensional hyperboloids is put by Malyshev A. V. [1]. De Luri [3] in case of four-dimensional hyperbolic surface \begin{equation*} p\left(x_1, \ldots, x_4\right) = \sum\limits_{k=1}^{4} a_k x_k^2 -m =0, \quad m \ne 0 \end{equation*} in the area $\Omega_p (L)$ on it by defined inequality \begin{equation*} \sum\limits_{k=1}^{4} \left| a_k \right| x_k^2 \leqslant L \end{equation*} obtained asymptotic formula (in $L\to\infty$ and fixed $a_1, a_2, a_3, a_4$, and $m$) for value of $R \left( \Omega_p (L) \right)$, equaled to the number of integer points in the area $\Omega_p (L)$ on the mentioned hyperboloid, but in so doing De Luri does not value the remainder formula. Later on in [1] generalization of this value is given on multidimensional hyperboloid given by the equation \begin{equation*} p = p\left(x_1, \ldots, x_s\right) = \sum\limits_{k=1}^{s} a_k x_k^2 + \sum\limits_{k=1}^{s} b_k x_k + c = 0, \end{equation*} where $a_k$, $b_k$, $(k = 1, \ldots, s)$, $c \ne 0$ — integers, in addition to coefficients $a_k$ not all is one sign, but area of $\Omega_p (L)$ on this hyperboloid is given by the inequality \begin{equation*} \sum\limits_{k=1}^{s} \left| a_k \right| x_k^2 \leqslant L. \end{equation*} In development of indicated task of Malyshev A. V. we examine arbitrary quadratic form equivalent to the diagonal in the equation of hyperboloid, and the area of \begin{equation*} \Omega_p (L) : \sum\limits_{k=1}^{s} \left| a_k \right| x_k^2 \leqslant L \end{equation*} is substituted for the area \begin{equation*} \sum\limits_{i=1}^{s} \left\{ Q_i^{(1)} \left(x_i, y_i\right) + Q_i^{(2)} \left(z_i, t_i\right) \right\} \leqslant L, \end{equation*} where $Q_i^{(1)}$ и $Q_i^{(2)}$ — binary quadratic forms, equivalent to diagonal forms. In conclusion of our asymptotic result about quantity of $R \left( \Omega_p, L \right)$ the theorem about weighted number of integer points $I_h (n, s)$ from [2] is used in $n\to\infty$ and the complex variant of tauberian’s theorem with remainder term for the power series (see [5, 6]). Also wee will note that our obtained result is analogous to one result of Davenport [7] by generalized problem of Varing in power $k=2$, but in such meaning of $k$ our question of hyperbolic surface has several more common kind. Bibliography: 16 titles.
Keywords: A. V. Malyshev problem, integer number, multidimensional hyperboloid, quadratic forms, tauberian theorem, asymptotic formula.
@article{CHEB_2015_16_3_a8,
     author = {R. A. Dokhov},
     title = {On a problem of {Malyshev} {A.} {V.} of integer points on multidimensional hyperboloids},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {209--218},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a8/}
}
TY  - JOUR
AU  - R. A. Dokhov
TI  - On a problem of Malyshev A. V. of integer points on multidimensional hyperboloids
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 209
EP  - 218
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a8/
LA  - ru
ID  - CHEB_2015_16_3_a8
ER  - 
%0 Journal Article
%A R. A. Dokhov
%T On a problem of Malyshev A. V. of integer points on multidimensional hyperboloids
%J Čebyševskij sbornik
%D 2015
%P 209-218
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a8/
%G ru
%F CHEB_2015_16_3_a8
R. A. Dokhov. On a problem of Malyshev A. V. of integer points on multidimensional hyperboloids. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 209-218. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a8/

[1] Malyshev A. V., “The weighted number of integer points lying on a surface of the second order”, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1, 1966, 6–83 (in Russian) | MR | Zbl

[2] Dokhov R. A., Pachev U. M., “On the weighted number of integer points on some multidimensional hyperboloids”, Chebyshevskii Sb., 16:3(55) (2015), 219–245 (in Russian)

[3] De Lury D. B., “On the representation of number by the indefinite form $a x^2+b y^2+c z^2+d t^2$”, Univ. of Toronto Studies. math. ser., 1938, no. 5, 1–17

[4] Estermann T. A., “New application of the Hardy–Littlewood–Kloosterman method”, Proc. Math. Soc., 12:3 (1962), 425–444 | DOI | MR | Zbl

[5] Postnikov A. G., Introduction to analytic number theory, Izdat. “Nauka”, M., 1971, 416 pp. (in Russian) | MR

[6] Subhankulov M. A., “Some general Tauberian theorems with remainder term”, Trudy Mat. Inst. Steklov, 64, 1961, 239–266 (in Russian) | MR

[7] Davenport H., Analitic Methods for Diophantine Equations and Diophantine Inequalities, 2004, 135 pp. | MR

[8] Malyshev A. V., “On the representation of integers by positive quadratic forms”, Trudy Mat. Inst. Steklov, 65 (1962), 3–212 (in Russian)

[9] Golubeva E. P., “Asymptotic number of points on certain ellipsoids”, Mat. Zametki, 11:6 (1972), 625–634 (in Russian) | MR | Zbl

[10] Myakishev V. P., “Distribution of primitive integral points on certain cones”, Dokl. Akad. Nauk SSSR, 143 (1962), 785–786 (in Russian) | MR | Zbl

[11] Vinogradov A. I., “On the continuability into the left half-plane of the scalar product of Hecke $L$-series with Grossencharaktere”, Izv. Akad. Nauk SSSR. Ser. Mat., 29 (1965), 485–492 (in Russian) | MR | Zbl

[12] Moroz B. Z., “Distribution of integer points on multidimensional hyperboloids and cones”, Zap. Nauchn. Sem. LOMI, 1, 1966, 84–113 (in Russian) | MR | Zbl

[13] Golovizin V. V., “On the distribution of integer points on hyperbolic surfaces of the second order”, Zap. Nauchn. Sem. LOMI, 106, 1981, 52–69 (in Russian) | Zbl

[14] Ingham A. E., “Some asymptotic formulae in the theory of numbers”, J. London. Math. Soc., 2:7 (1927), 202–208 | DOI | MR | Zbl

[15] Arkhipov G. I., Chubarikov V. N., “On the Ingham additive divisor problem”, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 2006, no. 5, 32–35 (in Russian)

[16] Freud G., “Restglied eines Tauberscher Satzes”, J. Acta Math. Acad. Scient. Hungaricae 2, 1951, no. 3–4, 299–308 | DOI | MR | Zbl