Distribution of the zeros of linear combinations of $L$-Dirichlet functions lying on the critical line
Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 183-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some problems of the number theory are associated with the zeros of special functions, such as the Riemann zeta function $\zeta(s)$, Dirichlet $L$-functions $L(s,\chi)$ and others. The Riemann zeta function is the most famous. On the half-plane $\Re{s}>1$, the Riemann zeta function is defined by Dirichlet series $$\zeta(s)=\sum_{n=1}^{+\infty}n^{-s}.$$ In 1859, Riemann conjectured that all non-trivial zeros of the Riemann zeta function lie on the critical line $\Re{s}=\frac{1}{2}$. Hardy was the first to prove in 1914 that an infinity of zeros are on the critical line. In 1942, Selberg obtained lower bound of the correct order of magnitude for the number zeros of the Riemann zeta functions on intervals of critical line $[T,T+H], H=T^{0.5+\varepsilon}$. In 1984, A. A. Karatsuba proved Selberg's result for shorter intervals of critical line $[T,T+H], H=T^{\frac{27}{82}+\varepsilon}$. For arithmetic Dirichlet series satisfying a functional equation of Riemann type but admitting no Euler product expansions, lower bounds of the correct order of magnitude for the number of their zeros on intervals of the critical line $\Re s =1/2$ have not been obtained so far. The first to show that the critical line contains abnormally many zeros of an arithmetic Dirichlet series without Euler products was Voronin, who proved in 1980 that interval $(0,T]$ of critical line contains more than $$ cTe^{\frac{1}{20}\sqrt{\ln{\ln{\ln{\ln{T}}}}}}$$ zeros of the Davenport–Heilbronn function. In 1989 A. A. Karatsuba developed a new method for obtaining lower bounds for the number zeros of certain Dirichlet series in intervals of critical line; by using this method, he substantially strengthened Voronin’s result. In 1991 Karatsuba solved (by his 1989 method) the problem of estimating the number zeros of linear combinations of functions which are analogous the Hardy function. In the present paper we prove a theorem similar to the theorem of A. A. Karatsuba (in 1991), but only for "almost all" intervals of the form $(T, T + H)$, $H = X^{\varepsilon}$, where $\varepsilon$ is an arbitrary positive number, and $X \leq T \leq 2X$, $X>X_0(\varepsilon)$. Bibliography: 17 titles.
Keywords: the Riemann zeta function, non-trivial zeros, critical line, the Dirichlet $L$-function.
@article{CHEB_2015_16_3_a7,
     author = {Do Duc Tam},
     title = {Distribution of the zeros of linear combinations of $L${-Dirichlet} functions lying on the critical line},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {183--208},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a7/}
}
TY  - JOUR
AU  - Do Duc Tam
TI  - Distribution of the zeros of linear combinations of $L$-Dirichlet functions lying on the critical line
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 183
EP  - 208
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a7/
LA  - ru
ID  - CHEB_2015_16_3_a7
ER  - 
%0 Journal Article
%A Do Duc Tam
%T Distribution of the zeros of linear combinations of $L$-Dirichlet functions lying on the critical line
%J Čebyševskij sbornik
%D 2015
%P 183-208
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a7/
%G ru
%F CHEB_2015_16_3_a7
Do Duc Tam. Distribution of the zeros of linear combinations of $L$-Dirichlet functions lying on the critical line. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 183-208. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a7/

[1] Riemann B., The works, OGIZ, M.–L., 1948, 479 pp. (in Russian)

[2] Hardy G. N., “Sur les zeros de la fonction $\zeta(s)$ de Riemann”, Compt. Rend. Acad. Sci., 158 (1914), 1012–1014 | Zbl

[3] Hardy G. H., Littlewood J. E., “The zeros of Riemann's zeta-function on the critical line”, Mathematische Zeitschrift, 10 (1921), 283–317 | DOI | MR | Zbl

[4] Selberg A., “On the zeros of Riemann's zeta-function”, Skr. Norske Vid. Akad. Oslo, 10 (1942), 1–59 | MR

[5] Karatsuba A. A., “On the distance between consecutive zeros of the Riemann zeta function that lie on the critical line”, Trudy Mat. Inst. Steklov, 157, 1981, 49–63 (in Russian) | MR | Zbl

[6] Karatsuba A. A., Fundamentals of analytic number theory, Nauka, M., 1983, 240 pp. (in Russian) | MR

[7] Karatsuba A. A., “On the zeros of the function $ \zeta(s)$ on short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 48:3 (1984), 569–584 (in Russian) | MR | Zbl

[8] Karatsuba A. A., “The distribution of zeros of the function $\zeta(1/2+it)$”, Izv. Akad. Nauk SSSR. Ser. Math., 48:6 (1984), 1214–1224 (in Russian) | MR | Zbl

[9] Karatsuba A. A., “Zeros of the Riemann zeta function on the critical line”, Trudy Mat. Inst. Steklov, 167, 1985, 167–178 (in Russian)

[10] Karatsuba A. A., “On the real zeros of the function $\zeta(1/2+it)$”, Uspekhi Mat. Nauk, 40:4 (1985), 171–172 (in Russian)

[11] Karatsuba A. A., “The Riemann zeta function and its zeros”, Uspekhi Mat. Nauk, 40:5 (1985), 23–82 (in Russian) | Zbl

[12] Karatsuba A. A., “On the zeros of the Davenport–Heilbronn function lying on the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 54:2 (1990), 303–315 (in Russian) | Zbl

[13] Karatsuba A. A., “On the zeros of a special type of function connected with Dirichlet series”, Izv. Akad. Nauk SSSR. Ser. Math., 55:3 (1991), 483–514 (in Russian)

[14] Karatsuba A. A., “On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 56:2 (1992), 372–397 (in Russian) | MR

[15] Karatsuba A. A., “A refinement of theorems on the number of zeros lying on intervals of the critical line of certain Dirichlet series”, Uspekhi Mat. Nauk, 47:2 (1992), 193–194 (in Russian) | MR

[16] Voronin S. M., “On the zeros of some Dirichlet series lying on the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., 44:1 (1980), 63–91 (in Russian) | MR | Zbl

[17] Voronin S. V., Karatsuba A. A., The Riemann zeta-function, Fizmatlit, M., 1994, 376 pp. (in Russian) | MR