Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_3_a5, author = {N. M. Glazunov}, title = {Extremal forms and rigidity in arithmetic geometry and in dynamics}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {124--146}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a5/} }
N. M. Glazunov. Extremal forms and rigidity in arithmetic geometry and in dynamics. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 124-146. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a5/
[1] Ryshkov S. S., “The polyhedron $u(m)$ and some extremal problems of the geomety of numbers”, Soviet Math. Dokl., 11 (1970), 1240–1244 | Zbl
[2] Hardy G. H., Littlewood J. E., “Some problems of “Partitio Numerorum”. V: A further contribution to the study of Goldbach`s problem”, Proc. London Math. Soc., Ser. 2, 22 (1923), 46–56 | MR | Zbl
[3] Vinogradov I. M., The method of trigonometric sums in the theory of numbers, Second edition, Nauka, M., 1980, 144 pp. (in Russian) | MR
[4] Vinogradov I. M., Special variants of the method of trigonometric sums, Nauka, M., 1976, 119 pp. (in Russian) | MR | Zbl
[5] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Theory of multiple trigonometric sums, Nauka, M., 1987, 368 pp. (in Russian) [Архипов Г. И., Карацуба А. А., Чубариков В. Н., Теория кратных тригонометрических сумм, Наука, М., 1986, 368 с. ] | MR | Zbl
[6] Arkhipov G. I., Chubarikov V. N., “On the exceptional set in a Goldbach-type binary problem”, Dokl. Akad. Nauk, 387:3 (2002), 295–296 (in Russian) | MR | Zbl
[7] Postnikov A. G., Izbrannye trudy, ed. V. N. Chubarikov, Fizmatlit, M., 2005, 512 pp. (in Russian) | MR | Zbl
[8] Arnold V. I., “Hard” and “soft” mathematical models, Izdat. MTsNMO, M., 2004 (in Russian)
[9] Shapharevich I. R., Foundations of Algebraic Geometry, v. 1, Nauka, M., 1988, 351 pp.; v. 2, 304 pp. (in Russian) [И. Р. Шафаревич, Основания алгебраической геометрии, т. 1, Наука, М., 1988, 351 с. ]; т. 2, 304 с. | MR
[10] Serre J.-P., Trees, Springer-Verlag, Berlin–Heidelberg–New York, 2003 | MR | Zbl
[11] Kedlaya K., Tuitman J., “Effective convergence bounds for Frobenius structures on connections”, Rend. Semin. Mat. Univ. Padova, 128 (2012), 7–16 | DOI | MR | Zbl
[12] Bourgain J., Furman A., Lindenstraussl E., Mozes S., “Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus”, J. Am. Math. Soc., 1 (2011), 231–280 | DOI | MR | Zbl
[13] Ioana A., “Cocycle superrigidity for profinite actions of property (T) groups”, Duke Math. J., 2 (2011), 337–367 | DOI | MR | Zbl
[14] James J., Koberda T., Lindsey K., Silva C., Speh P., “On ergodic transformations that are both weakly mixing and uniformly rigid”, New York J. Math., 15 (2009), 393–403 | MR | Zbl
[15] Gromov M., “Soft and Hard Symplectic Geometry”, Proceedings of the International Congress of Mathematicians (Berkeley, California, USA, 1986), v. I, 81–98 | MR | Zbl
[16] Hartshorne R., Algebraic Geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | Zbl
[17] Tate J., “Rigid analytic spaces”, Invent. Math., 12 (1971), 257–289 | DOI | MR | Zbl
[18] Mumford D., “An analytic construction of degenerating curves over complete local rings”, Compositio Mathematica, 24 (1972), 129–174 | MR | Zbl
[19] Raynaud M., “Géométrie analytique rigide d'aprés Tate, Kiehl,\ldots,table ronde a'analyse non-archimedienne”, Bull. Soc. math. France, 39–40 (1974), 319–327 | MR | Zbl
[20] Demazure M., Lectures on $p$-divisible groups, LNM, 302, Springer Verlag, Berlin, 1972 | MR | Zbl
[21] Serre J.-P., A Course of Arithmitic, Springer-Verlag, Berlin–Heidelberg–New York, 1973
[22] Selberg A., “On discontinuous groups in higher-dimensional symmetric spaces”, Contributions to function theory, Internat. Colloq. Function Theory, v. 4, Tata Institute of Fundamental Research, Bombay, 1960, 147–164 | MR
[23] Calabi E., Vesentini E., “On compact locally symmetric Kähler manifolds”, Ann. of Math., 71 (1960), 472–507 | DOI | MR | Zbl
[24] Weil A., “On discrete subgroups of Lie groups, I”, Ann. Math., 72 (1960), 369–384 | DOI | MR
[25] Furstenberg H., “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. Systems Theory, 1 (1967), 1–49 | DOI | MR | Zbl
[26] Mostow G., “Quasi-conformal mappings in $n$-space and the rigidity of the hyperbolic space forms”, Publ. Math. IHES, 34, 1968, 53–104 | DOI | MR | Zbl
[27] Margulis G., “Discrete groups of motions of manifolds of nonpositive curvature”, Proceedings of the International Congress of Mathematicians (Vancouver, Canada, 1974), v. II, 21–34 | MR | Zbl
[28] Fisher D., “Local rigidity of group actions: past, present, future”, Recent Progress in Dynamics, MSRI Publications, 54, 2007, 211–231 | MR
[29] Spatzier R., “An invitation to rigidity theory”, Modern dynamical systems and applications, Cambridge University Press, Cambridge, 2004, 45–97 | MR
[30] Glasner S., Maon D., “Rigidity in topological dynamics”, Ergodic Theory Dynam. Systems, 9 (1989), 309–320 | DOI | MR | Zbl
[31] Ageev O., Silva C., “Genericity of rigid and multiply recurrent infinite measure-preserving and nonsingular transformations”, Proceedings of the 16ty Summer Conference on General Topology and its applications (New York), Topology Proc., 26, no. 2, 2002, 357–365 | MR | Zbl
[32] James J., Koberda T., Lendsey K., Silva C., Speh P., “Measurable sensitivity”, Proc. Amer. Math. Soc., 136 (2008), 3549–3559 | DOI | MR | Zbl
[33] Peterson K., Ergodic Theory, Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge, 1983 | MR
[34] Halmos P. R., Measure theory, D. van Nostrand Co., Inc., New York, 1950, xi+304 pp. | MR | Zbl
[35] Furstenberg H., “Stiffness of group actions”, Tata Ins. Fund. Res. Stud. Math., 14, Bombay, 1998, 105–117 | MR | Zbl
[36] Einsiedler M., Lindenstrauss E., “Rigidity properties of $\mathbf{Z}^d$-actions on tori and and solinoids”, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 99–110 | DOI | MR | Zbl
[37] Margulis G., “Problems and conjectures in rigidity theory”, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, 161–174 | MR | Zbl
[38] Berthelot P., “Géométrie rigide et cohomologie des variétés algébriques de caractéristique $p$”, Mémoires de la Société Mathématique de France, Nouvelle Série, 23 (1986), 7–32 | MR | Zbl
[39] Kazhdan K., “On the connection of the dual space of a group with the structure of the closed subgroups”, Funct. Anal. and its Appl., 1 (1967), 63–65 | DOI | MR | Zbl
[40] Margulis G., “Finitely additive invariant measures on Euclidian spaces”, Ergodic Theory Dynam. Systems, 2 (1982), 383–396 | DOI | MR | Zbl
[41] Mostow G., Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, 78, Princeton University Press, Princeton, N.J., 1973 | MR | Zbl
[42] Margulis G., Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb., 17, Springer-Verlag, Berlin, 1991 | MR | Zbl
[43] Furman A., “Gromov`s measure equivalence and rigidity of higher rank lattices”, Ann. of Math., 2 (1999), 1059–1081 ; 1083–1108 | DOI | MR | Zbl | MR | Zbl
[44] Zimmer R., Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhuser Verlag, Basel, 1984 | MR | Zbl
[45] Popa S., “Deformation and rigidity for group actions and von Newmann algebras”, Proceedings of the International Congress of Mathematicians, v. I, Eur. Math. Soc., Zürich, 2007, 445–477 | MR | Zbl
[46] Faltings G., “Algebraic loop group and moduli spaces of bundles”, Journ. Eur. Math. Soc., 5 (2003), 41–68 | DOI | MR | Zbl
[47] Viehmann E., “Newton strata in the loop group of a reductive group”, Am. J. Math., 135:2 (2013), 499–518 | DOI | MR | Zbl
[48] Vasiu A., “Crystalline boundedness principle”, Ann. Sci. École Norm. Sup., 39:2 (2006), 245–300 | MR | Zbl
[49] Görtz U., Haines T., Kottwitz R., Reuman D., “Dimensions of some affine Deligne–Lusztig varieties”, Ann. Sci. École Norm. Sup., 39:3 (2006), 467–511 | MR
[50] Chai C., “Newton polygons as lattice points”, Journ. Amer. Math. Soc., 13 (2003), 209–241
[51] Glazunov N. M., “On norm maps and “universal norms” of formal groups over integer rings of local fields”, Continuous and Distributed Systems. Theory and Applications, Springer, 2014, 73–80 | DOI | MR | Zbl
[52] Glazunov N. M., “Crystalline cohomology and their applications”, Algebra and Number Theory: Modern Problems and Application, XII International Conference, RFFI, Tula, 2014, 52–54