Extremal forms and rigidity in arithmetic geometry and in dynamics
Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 124-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

Ryshkov S. S. in his papers has investigated extremal forms and extremal lattices. Extremal forms and lattices are connected with hard or rigid (by M. Gromov and other) objects in mathematics. In their work with colleagues S. S. Ryshkov came also to the other hard (or rigid) objects, for instance, to rigidly connected chain. Rigid and soft methods and results already evident in the study of the classical problems in number theory. Let us dwell briefly on the interpretation in terms of hard and soft methods of binary and ternary Goldbach problems. Since the binary (respectively ternary) Goldbach problems in their present formulation there are about equalities of the type $2n = p_1 + p_2 $ (respectively $2n+1 = p_1 + p_2 + p_3 $), where $n$ is a natural number greater than $1$ (respectively $n$ is a natural number greater than $2$), $p_1, p_2, p_3 $ prime numbers, then these are hard (rigid) problems; the results of their studies are also hard. However, the methods of their study include both rigid methods — the exact formula of the method of Hardy–Littlewood–Ramanujan and a combination of hard and soft methods under the investigation by the Vinogradov`s method of trigonometric sums. A number of problems of analytic number theory allow dynamic interpretation. We note in this regard that on connection of methods of analytic number theory and the theory of dynamical systems paid attention and has developed such analogies A. G. Postnikov. The purpose of the paper is not to provide any sort of comprehensive introduction to rigidity in arithmetic and dynamics. Rather, we attempt to convey elementary methods, results and some main ideas of the theory, with a survey of some new results. We do not explore an exhaustive list of possible topics, nor do we go into details in proofs. After giving an elementary number theoretic, algebraic and algebraic geometry introduction to rigid non-Archimedean spaces in the framework of local one dimensional complete regular rings, modules over rings, trees and formal schemes follow to I. R. Shafarevich, J.-P. Serre, J. Tate, D. Mumford, we review some novel results and methods on rigidity. These include (but not exhaust) methods and results by H. Furstenberg, G. A. Margulis, G. D. Mostow, R. Zimmer, J. Bourgain, A. Furman, A. Lindenstrauss, S. Mozes, J. James, T. Koberda, K. Lindsey, C. Silva, P. Speh, A. Ioana, K. Kedlaya, J. Tuitman, and other. Bibliography: 52 titles.
@article{CHEB_2015_16_3_a5,
     author = {N. M. Glazunov},
     title = {Extremal forms and rigidity in arithmetic geometry and in dynamics},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {124--146},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a5/}
}
TY  - JOUR
AU  - N. M. Glazunov
TI  - Extremal forms and rigidity in arithmetic geometry and in dynamics
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 124
EP  - 146
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a5/
LA  - en
ID  - CHEB_2015_16_3_a5
ER  - 
%0 Journal Article
%A N. M. Glazunov
%T Extremal forms and rigidity in arithmetic geometry and in dynamics
%J Čebyševskij sbornik
%D 2015
%P 124-146
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a5/
%G en
%F CHEB_2015_16_3_a5
N. M. Glazunov. Extremal forms and rigidity in arithmetic geometry and in dynamics. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 124-146. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a5/

[1] Ryshkov S. S., “The polyhedron $u(m)$ and some extremal problems of the geomety of numbers”, Soviet Math. Dokl., 11 (1970), 1240–1244 | Zbl

[2] Hardy G. H., Littlewood J. E., “Some problems of “Partitio Numerorum”. V: A further contribution to the study of Goldbach`s problem”, Proc. London Math. Soc., Ser. 2, 22 (1923), 46–56 | MR | Zbl

[3] Vinogradov I. M., The method of trigonometric sums in the theory of numbers, Second edition, Nauka, M., 1980, 144 pp. (in Russian) | MR

[4] Vinogradov I. M., Special variants of the method of trigonometric sums, Nauka, M., 1976, 119 pp. (in Russian) | MR | Zbl

[5] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., Theory of multiple trigonometric sums, Nauka, M., 1987, 368 pp. (in Russian) [Архипов Г. И., Карацуба А. А., Чубариков В. Н., Теория кратных тригонометрических сумм, Наука, М., 1986, 368 с. ] | MR | Zbl

[6] Arkhipov G. I., Chubarikov V. N., “On the exceptional set in a Goldbach-type binary problem”, Dokl. Akad. Nauk, 387:3 (2002), 295–296 (in Russian) | MR | Zbl

[7] Postnikov A. G., Izbrannye trudy, ed. V. N. Chubarikov, Fizmatlit, M., 2005, 512 pp. (in Russian) | MR | Zbl

[8] Arnold V. I., “Hard” and “soft” mathematical models, Izdat. MTsNMO, M., 2004 (in Russian)

[9] Shapharevich I. R., Foundations of Algebraic Geometry, v. 1, Nauka, M., 1988, 351 pp.; v. 2, 304 pp. (in Russian) [И. Р. Шафаревич, Основания алгебраической геометрии, т. 1, Наука, М., 1988, 351 с. ]; т. 2, 304 с. | MR

[10] Serre J.-P., Trees, Springer-Verlag, Berlin–Heidelberg–New York, 2003 | MR | Zbl

[11] Kedlaya K., Tuitman J., “Effective convergence bounds for Frobenius structures on connections”, Rend. Semin. Mat. Univ. Padova, 128 (2012), 7–16 | DOI | MR | Zbl

[12] Bourgain J., Furman A., Lindenstraussl E., Mozes S., “Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus”, J. Am. Math. Soc., 1 (2011), 231–280 | DOI | MR | Zbl

[13] Ioana A., “Cocycle superrigidity for profinite actions of property (T) groups”, Duke Math. J., 2 (2011), 337–367 | DOI | MR | Zbl

[14] James J., Koberda T., Lindsey K., Silva C., Speh P., “On ergodic transformations that are both weakly mixing and uniformly rigid”, New York J. Math., 15 (2009), 393–403 | MR | Zbl

[15] Gromov M., “Soft and Hard Symplectic Geometry”, Proceedings of the International Congress of Mathematicians (Berkeley, California, USA, 1986), v. I, 81–98 | MR | Zbl

[16] Hartshorne R., Algebraic Geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | Zbl

[17] Tate J., “Rigid analytic spaces”, Invent. Math., 12 (1971), 257–289 | DOI | MR | Zbl

[18] Mumford D., “An analytic construction of degenerating curves over complete local rings”, Compositio Mathematica, 24 (1972), 129–174 | MR | Zbl

[19] Raynaud M., “Géométrie analytique rigide d'aprés Tate, Kiehl,\ldots,table ronde a'analyse non-archimedienne”, Bull. Soc. math. France, 39–40 (1974), 319–327 | MR | Zbl

[20] Demazure M., Lectures on $p$-divisible groups, LNM, 302, Springer Verlag, Berlin, 1972 | MR | Zbl

[21] Serre J.-P., A Course of Arithmitic, Springer-Verlag, Berlin–Heidelberg–New York, 1973

[22] Selberg A., “On discontinuous groups in higher-dimensional symmetric spaces”, Contributions to function theory, Internat. Colloq. Function Theory, v. 4, Tata Institute of Fundamental Research, Bombay, 1960, 147–164 | MR

[23] Calabi E., Vesentini E., “On compact locally symmetric Kähler manifolds”, Ann. of Math., 71 (1960), 472–507 | DOI | MR | Zbl

[24] Weil A., “On discrete subgroups of Lie groups, I”, Ann. Math., 72 (1960), 369–384 | DOI | MR

[25] Furstenberg H., “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. Systems Theory, 1 (1967), 1–49 | DOI | MR | Zbl

[26] Mostow G., “Quasi-conformal mappings in $n$-space and the rigidity of the hyperbolic space forms”, Publ. Math. IHES, 34, 1968, 53–104 | DOI | MR | Zbl

[27] Margulis G., “Discrete groups of motions of manifolds of nonpositive curvature”, Proceedings of the International Congress of Mathematicians (Vancouver, Canada, 1974), v. II, 21–34 | MR | Zbl

[28] Fisher D., “Local rigidity of group actions: past, present, future”, Recent Progress in Dynamics, MSRI Publications, 54, 2007, 211–231 | MR

[29] Spatzier R., “An invitation to rigidity theory”, Modern dynamical systems and applications, Cambridge University Press, Cambridge, 2004, 45–97 | MR

[30] Glasner S., Maon D., “Rigidity in topological dynamics”, Ergodic Theory Dynam. Systems, 9 (1989), 309–320 | DOI | MR | Zbl

[31] Ageev O., Silva C., “Genericity of rigid and multiply recurrent infinite measure-preserving and nonsingular transformations”, Proceedings of the 16ty Summer Conference on General Topology and its applications (New York), Topology Proc., 26, no. 2, 2002, 357–365 | MR | Zbl

[32] James J., Koberda T., Lendsey K., Silva C., Speh P., “Measurable sensitivity”, Proc. Amer. Math. Soc., 136 (2008), 3549–3559 | DOI | MR | Zbl

[33] Peterson K., Ergodic Theory, Cambridge Studies in Advanced Mathematics, 2, Cambridge University Press, Cambridge, 1983 | MR

[34] Halmos P. R., Measure theory, D. van Nostrand Co., Inc., New York, 1950, xi+304 pp. | MR | Zbl

[35] Furstenberg H., “Stiffness of group actions”, Tata Ins. Fund. Res. Stud. Math., 14, Bombay, 1998, 105–117 | MR | Zbl

[36] Einsiedler M., Lindenstrauss E., “Rigidity properties of $\mathbf{Z}^d$-actions on tori and and solinoids”, Electron. Res. Announc. Amer. Math. Soc., 9 (2003), 99–110 | DOI | MR | Zbl

[37] Margulis G., “Problems and conjectures in rigidity theory”, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, 161–174 | MR | Zbl

[38] Berthelot P., “Géométrie rigide et cohomologie des variétés algébriques de caractéristique $p$”, Mémoires de la Société Mathématique de France, Nouvelle Série, 23 (1986), 7–32 | MR | Zbl

[39] Kazhdan K., “On the connection of the dual space of a group with the structure of the closed subgroups”, Funct. Anal. and its Appl., 1 (1967), 63–65 | DOI | MR | Zbl

[40] Margulis G., “Finitely additive invariant measures on Euclidian spaces”, Ergodic Theory Dynam. Systems, 2 (1982), 383–396 | DOI | MR | Zbl

[41] Mostow G., Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, 78, Princeton University Press, Princeton, N.J., 1973 | MR | Zbl

[42] Margulis G., Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb., 17, Springer-Verlag, Berlin, 1991 | MR | Zbl

[43] Furman A., “Gromov`s measure equivalence and rigidity of higher rank lattices”, Ann. of Math., 2 (1999), 1059–1081 ; 1083–1108 | DOI | MR | Zbl | MR | Zbl

[44] Zimmer R., Ergodic theory and semisimple groups, Monographs in Mathematics, 81, Birkhuser Verlag, Basel, 1984 | MR | Zbl

[45] Popa S., “Deformation and rigidity for group actions and von Newmann algebras”, Proceedings of the International Congress of Mathematicians, v. I, Eur. Math. Soc., Zürich, 2007, 445–477 | MR | Zbl

[46] Faltings G., “Algebraic loop group and moduli spaces of bundles”, Journ. Eur. Math. Soc., 5 (2003), 41–68 | DOI | MR | Zbl

[47] Viehmann E., “Newton strata in the loop group of a reductive group”, Am. J. Math., 135:2 (2013), 499–518 | DOI | MR | Zbl

[48] Vasiu A., “Crystalline boundedness principle”, Ann. Sci. École Norm. Sup., 39:2 (2006), 245–300 | MR | Zbl

[49] Görtz U., Haines T., Kottwitz R., Reuman D., “Dimensions of some affine Deligne–Lusztig varieties”, Ann. Sci. École Norm. Sup., 39:3 (2006), 467–511 | MR

[50] Chai C., “Newton polygons as lattice points”, Journ. Amer. Math. Soc., 13 (2003), 209–241

[51] Glazunov N. M., “On norm maps and “universal norms” of formal groups over integer rings of local fields”, Continuous and Distributed Systems. Theory and Applications, Springer, 2014, 73–80 | DOI | MR | Zbl

[52] Glazunov N. M., “Crystalline cohomology and their applications”, Algebra and Number Theory: Modern Problems and Application, XII International Conference, RFFI, Tula, 2014, 52–54