Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_3_a3, author = {V. I. Bernik and A. G. Gusakova and A. V. Ustinov}, title = {Distribution of algebraic points in domains of small measure and near the surfaces}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {78--94}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a3/} }
TY - JOUR AU - V. I. Bernik AU - A. G. Gusakova AU - A. V. Ustinov TI - Distribution of algebraic points in domains of small measure and near the surfaces JO - Čebyševskij sbornik PY - 2015 SP - 78 EP - 94 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a3/ LA - ru ID - CHEB_2015_16_3_a3 ER -
V. I. Bernik; A. G. Gusakova; A. V. Ustinov. Distribution of algebraic points in domains of small measure and near the surfaces. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 78-94. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a3/
[1] Bernik V., Goetze F., Kukso O., “On algebraic points in the plane near smooth curves”, Lith. Math. Journal, 54:3 (2014), 231–251 | DOI | MR | Zbl
[2] Schmidt W., “T-numbers do exist”, Symposia Mathematica, IV (INDAM, Rome, 1968/1969), 1970, 3–26 | MR | Zbl
[3] Budarina N. V., Bernik V. I., O'Donnell H., “Real algebraic numbers of the third degree in a short intervals”, Doklady NAN Belarusi, 57:4 (2012), 23–26
[4] Beresnevich V., Bernik V., Goetze F., “The distribution of close conjugate algebraic numbers”, Compos. Math., 146:5 (2010), 1165–1179 | DOI | MR | Zbl
[5] Beresnevich V. V., Bernik V. I., Goetze F., “On distribution of the values of resultants of integer polynomials”, Doklady NAN Belarusi, 54:5 (2010), 21–23 | MR
[6] Beresnevich V. V., Bernik V. I., Goetze F., “Conjugate approximations of zero by integer polynomial, its derivative and small values of discriminants”, Doklady NAN Belarusi, 54:2 (2010), 26–27
[7] Beresnevich V., “Rational points ear manifolds and metric Diophantine approximation”, Ann. of Math., 175:1 (2012), 187–235 | DOI | MR | Zbl
[8] Bugeaud Y., Approximation by algebraic numbers, Cambridge Tracts in Mathematics, 160, Cambridge University Press, Cambridge, 2004, 274 pp. | MR | Zbl
[9] Feldman N. I., “Approximation of some transcendental numbers. I: Approximation of logarithms of algebraic numbers”, Izv. AN SSSR, 15:1 (1951), 53–74 | MR
[10] Sprindzhuk V. G., Mahlers's problem in metric number theory, Nauka i tehnika, Minsk, 1967, 184 pp. (in Russian)
[11] Bernik V. I., “Using Hausdorff dimension in the theory of Diophantine approximation”, Acta Arith., 42:3 (1983), 219–253 | MR | Zbl
[12] Beresnevich V. V., Vaughan R. C., Velani S. L., “Inhomogeneous Diophantine approximation on planar curves”, Math. Ann., 349:4 (2011), 929–942 | DOI | MR | Zbl
[13] Beresnevich V., Dickinson D., Velani S., “Diophantine approximation on planar curves and the distribution of rational points”, Ann. of Math., 166:2 (2007), 367–426 | DOI | MR | Zbl
[14] Bernik V., Beresnevich V., Goetze F., Kukso O., “Distribution of algebraic numbers and metric theory of Diophantine approximation”, Limit theorems in probability, statistics and number theory, Springer Proc. Math. Stat., 42, Springer, Heidelberg, 2013, 23–48 | MR | Zbl
[15] Beresnevich V., Zorin E., “Explizit bounds for rational points near planar curves and metric Diophantine approximation”, Adv. Math., 225:6 (2010), 3064–3087 | DOI | MR | Zbl
[16] Budarina N. V., “The Mahler problem with nonmonotone right-hand side in field of complex numbers”, Math. Notes, 93:5–6 (2013), 812–820 | MR | Zbl