Essentially Baer modules
Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 355-375.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concepts Rickart rings and Baer rings have their roots in the theory of linear operators in Hilbert space. The concept of Baer rings was introduced by I. Kaplansky in 1955 and the concept of Rickart rings was introduced by Maeda in 1960. In recent years, many authors have been actively studied the module theoretic analogue of these rings. In this paper, we introduce the concept of essentially Baer modules, essentially quasi-Baer modules and study their properties. We prove that, every direct summand of an essentially Baer module is also an essentially Baer module. We also prove that, every free module over essentially quasi-Baer ring is an essentially quasi-Baer module and each finitely generated free module over dual essentially quasi-Baer ring is a dually essentially quasi-Baer module; if $M$ is CS-Rickart and $M$ has the SSIP-CS then $M$ is essentially Baer. The converse is true if $\mathrm{Soc}M\unlhd M$; if $M$ is d-CS-Rickart and $M$ has the SSSP-d-CS then $M$ is dual essentially Baer. The converse is true if $\mathrm{Rad}M\ll M$; if $R$ is a right semi-artinian ring, then $M$ is an essentially Baer module if and only if $M$ is CS-Rickart and $M$ has the SSIP-CS; if $R$ is a right max ring, then $M$ is a dual essentially Baer module if and only if $M$ is d-CS-Rickart and $M$ has the SSSP-d-CS; if $M$ be a projective module and $\mathcal{P}(M)=0$, then $M$ is a quasi-Baer module if and only if every fully invariant submodule of $M$ is essential in a fully invariant direct summand of $M$, if and only if the right annihilator in $M$ of every ideal of $S$ is essential in a fully invariant direct summand of $M$. We also give some characterizations of projective quasi-Baer modules. The presented results yield the known results related to Baer modules and dual Baer modules. Bibliography: 34 titles.
Keywords: Essentially Baer modules, dual essentially Baer modules, CS-Rickart modules, d-CS-Rickart modules, SIP-CS modules, SSP-d-CS modules.
@article{CHEB_2015_16_3_a17,
     author = {T. H. N. Nhan},
     title = {Essentially {Baer} modules},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {355--375},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a17/}
}
TY  - JOUR
AU  - T. H. N. Nhan
TI  - Essentially Baer modules
JO  - Čebyševskij sbornik
PY  - 2015
SP  - 355
EP  - 375
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a17/
LA  - ru
ID  - CHEB_2015_16_3_a17
ER  - 
%0 Journal Article
%A T. H. N. Nhan
%T Essentially Baer modules
%J Čebyševskij sbornik
%D 2015
%P 355-375
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a17/
%G ru
%F CHEB_2015_16_3_a17
T. H. N. Nhan. Essentially Baer modules. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 355-375. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a17/

[1] Abyzov A. N., Nhan T. H. N., “CS-Rickart Modules”, Lobachevskii Journal of Mathematics, 35:4 (2014), 317–326 | DOI | MR | Zbl

[2] Abyzov A. N., Tuganbaev A. A., “Modules in which sums or intersections of two direct summands are direct summands”, Fundam. Prikl. Mat., 19:2 (2014), 3–11

[3] Agayev N., Harmanci A., Halicioglu S., “On Rickart modules”, Bulletin of the Iranian Mathematical Society, 38:2 (2012), 433–445 | MR | Zbl

[4] Al-Saadi S. A., Ibrahiem T. A., “Strongly Rickart modules”, Journal of Advances in Mathematics, 9:4 (2014)

[5] Bican L., Jambor P., Kepka T., Nemec P., “Prime and coprime modules”, Fundamenta Mathematicae, CVII (1980), 33–45 | MR | Zbl

[6] Birkenmeier G. F., Muller B. J., Rizvi S. T., “Modules in which every fully invariant submodules is essential in a direct summand”, Comm. Algebra, 30:3 (2002), 1395–1415 | DOI | MR | Zbl

[7] Birkenmeier G. F., Park J. K., Rizvi S. T., “A Theory of hulls for rings and modules”, Ring and module theory, Trends Math., Birkhäuser, 2010 | MR

[8] Birkenmeier G. F., Park J. K., Rizvi S. T., Extensions of rings and modules, Birkhäuser, 2013 | MR | Zbl

[9] Birkenmeier G. F., “A generalization of FPF rings”, Comm. Algebra, 17:4 (2007), 855–884 | DOI | MR

[10] Brown K. A., “The singular ideals of group rings”, Quart. J. Oxford, 28 (1977), 41–60 | DOI | MR | Zbl

[11] Clark W. E., “Twisted matrix units semigroup algebras”, Duke Math. J., 34 (1967), 417–424 | DOI | MR

[12] Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel–Boston–Berlin, 2006 | MR | Zbl

[13] Fuchs L., Infinite Abelian Groups, v. 1, Academic Press, New York–London, 1970 | MR | Zbl

[14] Garcia J. L., “Properties of Direct Summands of Modules”, Comm. Algebra, 17:1 (1989), 73–92 | DOI | MR | Zbl

[15] Hausen J., “Modules with the summand intersection property”, Comm. Algebra, 17:1 (1989), 135–148 | DOI | MR | Zbl

[16] Kaplansky I., Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, 1969 | MR | Zbl

[17] Kaplansky I., Rings of Operators, Benjamin, New York, 1968 | MR | Zbl

[18] Karabacak F., “On generalizations of extending modules”, Kyungpook Mathematical Journal, 49 (2009), 255–263 | DOI | MR

[19] Karabacak F., Tercan A., “On modules and matrix rings with SIP-extending”, Taiwanese J. Math., 11 (2007), 1037–1044 | MR | Zbl

[20] Lee G., Rizvi S. T., Roman C. S., “Rickart Modules”, Comm. Algebra, 38:11 (2010), 4005–4027 | DOI | MR | Zbl

[21] Lee G., Rizvi S. T., Roman C. S., “Dual Rickart Modules”, Comm. Algebra, 39:11 (2011), 4036–4058 | DOI | MR | Zbl

[22] Liu Q., Ouyang B. Y., Wu T. S., “Principally quasi-Baer modules”, Journal of Mathematical Research and Exposition, 29:5 (2009), 823–830 | MR | Zbl

[23] Maeda S., “On a ring whose principal right ideals generated by idempotents form a lattice”, J. Sci. Hiroshima Univ. Ser. A, 24 (1960), 509–525 | MR | Zbl

[24] Nicholson W. K., Yousif M. F., “Weakly continous and $C_2$ rings”, Comm. Algebra, 29:6 (2001), 2429–2446 | DOI | MR | Zbl

[25] Quynh T. C., “On fully prime submodules”, Asian-European Journal of Mathematics (to appear)

[26] Raggi F., Rios J., Rincon H., Fernandez-Alonso R., Signoret C., “Prime and irreducible preradicals”, J. Algebra Appl., 4:4 (2005), 451–466 | DOI | MR | Zbl

[27] Rizvi S. T., Roman C. S., “Baer and quasi-Baer modules”, Comm. Algebra, 32:1 (2004), 103–123 | DOI | MR | Zbl

[28] Rizvi S. T., Roman C. S., “Baer property of modules and applications”, Advances in Ring Theory, 2005, 225–241 | DOI | MR | Zbl

[29] Talebi Y., Hamzekolaee A. R. M., “On SSP-lifting modules”, East-West Journal of Mathematics, 01 (2013), 1–7 | MR

[30] Tütüncü D. K., Tribak R., “On dual Baer Modules”, Glasgow Math. J., 52 (2010), 261–269 | DOI | MR | Zbl

[31] Wilson G. V., “Modules with the direct summand intersection property”, Comm. Algebra, 14 (1986), 21–38 | DOI | MR | Zbl

[32] Ungor B., Agayev N., Halicioglu S., Harmanci A., “On principally quasi-Baer modules”, Albanian J. Math., 5:3 (2011), 165–173 | MR | Zbl

[33] Wisbauer R., Foundations of module and ring theory. A handbook for study and research, Gordon and Breach Science Publishers, Reading, 1991 | MR | Zbl

[34] Zeng Q., “Some examples of ACS-rings”, Vietnam Journal of Mathematics, 35:1 (2007), 11–19 | MR | Zbl