Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2015_16_3_a17, author = {T. H. N. Nhan}, title = {Essentially {Baer} modules}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {355--375}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a17/} }
T. H. N. Nhan. Essentially Baer modules. Čebyševskij sbornik, Tome 16 (2015) no. 3, pp. 355-375. http://geodesic.mathdoc.fr/item/CHEB_2015_16_3_a17/
[1] Abyzov A. N., Nhan T. H. N., “CS-Rickart Modules”, Lobachevskii Journal of Mathematics, 35:4 (2014), 317–326 | DOI | MR | Zbl
[2] Abyzov A. N., Tuganbaev A. A., “Modules in which sums or intersections of two direct summands are direct summands”, Fundam. Prikl. Mat., 19:2 (2014), 3–11
[3] Agayev N., Harmanci A., Halicioglu S., “On Rickart modules”, Bulletin of the Iranian Mathematical Society, 38:2 (2012), 433–445 | MR | Zbl
[4] Al-Saadi S. A., Ibrahiem T. A., “Strongly Rickart modules”, Journal of Advances in Mathematics, 9:4 (2014)
[5] Bican L., Jambor P., Kepka T., Nemec P., “Prime and coprime modules”, Fundamenta Mathematicae, CVII (1980), 33–45 | MR | Zbl
[6] Birkenmeier G. F., Muller B. J., Rizvi S. T., “Modules in which every fully invariant submodules is essential in a direct summand”, Comm. Algebra, 30:3 (2002), 1395–1415 | DOI | MR | Zbl
[7] Birkenmeier G. F., Park J. K., Rizvi S. T., “A Theory of hulls for rings and modules”, Ring and module theory, Trends Math., Birkhäuser, 2010 | MR
[8] Birkenmeier G. F., Park J. K., Rizvi S. T., Extensions of rings and modules, Birkhäuser, 2013 | MR | Zbl
[9] Birkenmeier G. F., “A generalization of FPF rings”, Comm. Algebra, 17:4 (2007), 855–884 | DOI | MR
[10] Brown K. A., “The singular ideals of group rings”, Quart. J. Oxford, 28 (1977), 41–60 | DOI | MR | Zbl
[11] Clark W. E., “Twisted matrix units semigroup algebras”, Duke Math. J., 34 (1967), 417–424 | DOI | MR
[12] Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel–Boston–Berlin, 2006 | MR | Zbl
[13] Fuchs L., Infinite Abelian Groups, v. 1, Academic Press, New York–London, 1970 | MR | Zbl
[14] Garcia J. L., “Properties of Direct Summands of Modules”, Comm. Algebra, 17:1 (1989), 73–92 | DOI | MR | Zbl
[15] Hausen J., “Modules with the summand intersection property”, Comm. Algebra, 17:1 (1989), 135–148 | DOI | MR | Zbl
[16] Kaplansky I., Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, 1969 | MR | Zbl
[17] Kaplansky I., Rings of Operators, Benjamin, New York, 1968 | MR | Zbl
[18] Karabacak F., “On generalizations of extending modules”, Kyungpook Mathematical Journal, 49 (2009), 255–263 | DOI | MR
[19] Karabacak F., Tercan A., “On modules and matrix rings with SIP-extending”, Taiwanese J. Math., 11 (2007), 1037–1044 | MR | Zbl
[20] Lee G., Rizvi S. T., Roman C. S., “Rickart Modules”, Comm. Algebra, 38:11 (2010), 4005–4027 | DOI | MR | Zbl
[21] Lee G., Rizvi S. T., Roman C. S., “Dual Rickart Modules”, Comm. Algebra, 39:11 (2011), 4036–4058 | DOI | MR | Zbl
[22] Liu Q., Ouyang B. Y., Wu T. S., “Principally quasi-Baer modules”, Journal of Mathematical Research and Exposition, 29:5 (2009), 823–830 | MR | Zbl
[23] Maeda S., “On a ring whose principal right ideals generated by idempotents form a lattice”, J. Sci. Hiroshima Univ. Ser. A, 24 (1960), 509–525 | MR | Zbl
[24] Nicholson W. K., Yousif M. F., “Weakly continous and $C_2$ rings”, Comm. Algebra, 29:6 (2001), 2429–2446 | DOI | MR | Zbl
[25] Quynh T. C., “On fully prime submodules”, Asian-European Journal of Mathematics (to appear)
[26] Raggi F., Rios J., Rincon H., Fernandez-Alonso R., Signoret C., “Prime and irreducible preradicals”, J. Algebra Appl., 4:4 (2005), 451–466 | DOI | MR | Zbl
[27] Rizvi S. T., Roman C. S., “Baer and quasi-Baer modules”, Comm. Algebra, 32:1 (2004), 103–123 | DOI | MR | Zbl
[28] Rizvi S. T., Roman C. S., “Baer property of modules and applications”, Advances in Ring Theory, 2005, 225–241 | DOI | MR | Zbl
[29] Talebi Y., Hamzekolaee A. R. M., “On SSP-lifting modules”, East-West Journal of Mathematics, 01 (2013), 1–7 | MR
[30] Tütüncü D. K., Tribak R., “On dual Baer Modules”, Glasgow Math. J., 52 (2010), 261–269 | DOI | MR | Zbl
[31] Wilson G. V., “Modules with the direct summand intersection property”, Comm. Algebra, 14 (1986), 21–38 | DOI | MR | Zbl
[32] Ungor B., Agayev N., Halicioglu S., Harmanci A., “On principally quasi-Baer modules”, Albanian J. Math., 5:3 (2011), 165–173 | MR | Zbl
[33] Wisbauer R., Foundations of module and ring theory. A handbook for study and research, Gordon and Breach Science Publishers, Reading, 1991 | MR | Zbl
[34] Zeng Q., “Some examples of ACS-rings”, Vietnam Journal of Mathematics, 35:1 (2007), 11–19 | MR | Zbl